Как найти диаметр окружности вписанной в прямоугольнике

Прямоугольник. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

Как найти диаметр окружности вписанной в прямоугольнике

Можно дать и другое определение прямоугольника.

Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

Свойства прямоугольника

Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

  • 1. Стороны прямоугольника являются его высотами.
  • 2. Все углы прямоугольника прямые.
  • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
  • 4. Диагонали прямоугольника равны.
  • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

Длиной прямоугольника называется более длинная пара его сторон.

Шириной прямоугольника называется более короткая пара его сторон.

Видео:8 класс. ОГЭ. Найти диаметр окружностиСкачать

8 класс. ОГЭ. Найти диаметр окружности

Диагональ прямоугольника

Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

Как найти диаметр окружности вписанной в прямоугольнике

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Как найти диаметр окружности вписанной в прямоугольнике
Как найти диаметр окружности вписанной в прямоугольнике.(1)

Из равенства (1) найдем d:

Как найти диаметр окружности вписанной в прямоугольнике.(2)

Пример 1. Стороны прямоугольника равны Как найти диаметр окружности вписанной в прямоугольнике. Найти диагональ прямоугольника.

Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя Как найти диаметр окружности вписанной в прямоугольникев (2), получим:

Как найти диаметр окружности вписанной в прямоугольнике

Ответ: Как найти диаметр окружности вписанной в прямоугольнике

Видео:КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Окружность, описанная около прямоугольника

Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

Как найти диаметр окружности вписанной в прямоугольнике

Видео:ЕГЭ профиль #3 / Радиус описанной окружности / прямоугольник / диагонали / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / прямоугольник / диагонали / решу егэ

Формула радиуса окружности описанной около прямоугольника

Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

( small R=frac )(3)

Подставляя (3) в (2), получим:

( small R=frac<large sqrt> )(4)

Пример 2. Стороны прямоугольника равны Как найти диаметр окружности вписанной в прямоугольнике. Найти радиус окружности, описанной вокруг прямоугольника.

Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя Как найти диаметр окружности вписанной в прямоугольникев (4), получим:

Как найти диаметр окружности вписанной в прямоугольнике
Как найти диаметр окружности вписанной в прямоугольнике

Ответ: Как найти диаметр окружности вписанной в прямоугольнике

Видео:№694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенузаСкачать

№694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза

Периметр прямоугольника

Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Периметр прямоугольника вычисляется формулой:

Как найти диаметр окружности вписанной в прямоугольнике(5)

где ( small a ) и ( small b ) − стороны прямоугольника.

Пример 3. Стороны прямоугольника равны Как найти диаметр окружности вписанной в прямоугольнике. Найти периметр прямоугольника.

Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя Как найти диаметр окружности вписанной в прямоугольникев (5), получим:

Как найти диаметр окружности вписанной в прямоугольнике

Ответ: Как найти диаметр окружности вписанной в прямоугольнике

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Формулы сторон прямоугольника через его диагональ и периметр

Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

Как найти диаметр окружности вписанной в прямоугольнике(6)
Как найти диаметр окружности вписанной в прямоугольнике(7)

Из формулы (7) найдем ( small b ) и подставим в (6):

Как найти диаметр окружности вписанной в прямоугольнике(8)
Как найти диаметр окружности вписанной в прямоугольнике(9)

Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

Как найти диаметр окружности вписанной в прямоугольнике(10)

Вычислим дискриминант квадратного уравнения (10):

Как найти диаметр окружности вписанной в прямоугольникеКак найти диаметр окружности вписанной в прямоугольнике(11)

Сторона прямоугольника вычисляется из следующих формул:

Как найти диаметр окружности вписанной в прямоугольнике(12)

После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

Примечание. Легко можно доказать, что

( frac

>d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*).

Пример 4. Диагональ прямоугольника равна Как найти диаметр окружности вписанной в прямоугольнике, а периметр равен Как найти диаметр окружности вписанной в прямоугольнике. Найти стороны прямоугольника.

Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим Как найти диаметр окружности вписанной в прямоугольнике, Как найти диаметр окружности вписанной в прямоугольникев (11):

Как найти диаметр окружности вписанной в прямоугольнике

Подставляя значения Как найти диаметр окружности вписанной в прямоугольникеи Как найти диаметр окружности вписанной в прямоугольникев первую формулу (12), получим:

Как найти диаметр окружности вписанной в прямоугольнике

Найдем другую сторону ( small b ) из формулы (8). Подставляя значения Как найти диаметр окружности вписанной в прямоугольникеи Как найти диаметр окружности вписанной в прямоугольникев формулу, получим:

Как найти диаметр окружности вписанной в прямоугольнике

Ответ: Как найти диаметр окружности вписанной в прямоугольнике, Как найти диаметр окружности вписанной в прямоугольнике

Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

Признаки прямоугольника

Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Все формулы для радиуса вписанной окружности

Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

Окружность вписана в равносторонний треугольник, найти радиус

Радиус вписанной окружности в треугольник

Как найти диаметр окружности вписанной в прямоугольнике

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Как найти диаметр окружности вписанной в прямоугольнике

Видео:Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)

Радиус вписанной окружности в равносторонний треугольник

Как найти диаметр окружности вписанной в прямоугольнике

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Как найти диаметр окружности вписанной в прямоугольнике

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

Как найти диаметр окружности вписанной в прямоугольнике

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Как найти диаметр окружности вписанной в прямоугольнике

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

Как найти диаметр окружности вписанной в прямоугольнике

Как найти диаметр окружности вписанной в прямоугольнике

2. Формулы радиуса вписанной окружности если известны: сторона и высота

Как найти диаметр окружности вписанной в прямоугольнике

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Видео:Задание 24 Радиус окружности вписанной в прямоугольный треугольникСкачать

Задание 24  Радиус окружности вписанной в прямоугольный треугольник

Вписанная окружность

Как найти диаметр окружности вписанной в прямоугольнике

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Как найти диаметр окружности вписанной в прямоугольнике
    • Четырехугольник
      Как найти диаметр окружности вписанной в прямоугольнике
    • Многоугольник
      Как найти диаметр окружности вписанной в прямоугольнике

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    📺 Видео

    Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

    Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.

    Задание 16 ОГЭ по математике. Окружность вписана в трапецию.Скачать

    Задание 16 ОГЭ по математике. Окружность вписана в трапецию.

    найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

    Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

    Геометрия Украденная задача Найти радиусСкачать

    Геометрия Украденная задача Найти радиус

    Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

    Задача 6 №27913 ЕГЭ по математике. Урок 131

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline
    Поделиться или сохранить к себе: