Как найти bh в треугольнике

Высота треугольника онлайн

С помощю этого онлайн калькулятора можно найти высоту треугольника. Для нахождения высоты треугольника введите известные элементы треугольника и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Высота треугольника. Определение

Определение 1. Отрезок, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.

Как найти bh в треугольникеКак найти bh в треугольникеКак найти bh в треугольнике

Высота треугольника может содержаться внутри треугольника (Рис.1), совпадать со стороной треугольника (при прямоугольном треугольнике высота совпадает с катетом (Рис.2) ), проходить вне треугольника (при тупоугольном треугольнике(Рис.3)).

Видео:В треугольнике ABC угол С=90, CH -- высота, AB=13, tgA=5. Найти BHСкачать

В треугольнике ABC угол С=90, CH -- высота, AB=13, tgA=5. Найти BH

Теорема о пересечении высот треугольника

Теорема 1. Все три высоты треугольника (или их продолжения) пересекаются в одной точке.

Как найти bh в треугольнике

Доказательство. Рассмотрим произвольный треугольник ABC (Рис.4). Докажем, что высоты ( small AA_1 ,) ( small BB_1 ,) ( small CC_1 ) пересекаются в одной точке. Из каждой вершины треугольника проведем прямую, параллельно противоположной стороне. Получим треугольник ( small A_2B_2C_2. ) Покажем, что точки ( small A, B, C ) являются серединами сторон треугольника ( small A_2B_2C_2. ) ( small AB=A_2C ) так как они являются противоположными сторонами параллелограмма ( small ABA_2C. ) ( small AB=CB_2 ) так как они являются противоположными сторонами параллелограмма ( small ABCB_2. ) Тогда ( small CB_2=CA_2, ) то есть точка ( small C ) является серединой стороны ( small A_2B_2 ) треугольника ( small A_2B_2C_2. ) Аналогично доказывается, что точки ( small A ) и ( small B ) являются серединами сторон ( small B_2C_2 ) и ( small A_2C_2, ) соответственно.

Далее из ( small AA_1⊥BC ) следует, что ( small AA_1⊥B_2C_2 ) поскольку ( small BC ǁ B_2C_2 ). Аналогично, ( small BB_1⊥A_2C_2, ) ( small CC_1⊥A_2B_2. ) Получили, что ( small AA_1,) ( small BB_1, ) ( small CC_1) являются серединными перпендикулярами сторон ( small B_2C_2, ) ( small A_2C_2, ) ( small A_2B_2, ) соответственно. Но серединные перпендикуляры треугольника пересекаются в одной точке (см. статью Серединные перпендикуляры к сторонам треугольника). Следовательно высоты треугольника или их продолжения пересекаются в одной точке.

Точка пересечения высот треугольника называется ортоцентром.

Видео:В треугольнике ABC BM – медиана и BH – высота ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать

В треугольнике ABC BM – медиана и BH – высота ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРА

Высота треугольника по основанию и площади

Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).

Как найти bh в треугольнике

Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:

Как найти bh в треугольнике.
Как найти bh в треугольнике.(1)

Пример 1. Сторона треугольника равна ( small a=5 ) а площадь ( small S=7. ) Найти высоту треугольника.

Применим формулу (1). Подставляя значения ( small a ) и ( small S ) в (1), получим:

Как найти bh в треугольнике

Ответ: Как найти bh в треугольнике

Видео:ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном ТреугольникеСкачать

ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном Треугольнике

Высота треугольника по трем сторонам

Формула площади треугольника по трем сторонам имеет следующий вид (см. статью на странице Площадь треугольника онлайн):

Как найти bh в треугольнике(2)

где ( small a, b, c ) стороны треугольника а полупериод ( small p ) вычисляется из формулы:

Как найти bh в треугольнике(3)

Высота треугольника, отпущенная на сторону ( small a) вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления высоты треугольника по трем сторонам:

Как найти bh в треугольнике.(4)

Пример 2. Известны стороны треугольника: ( small a=5, ) ( small b= 4, ) ( small c=7. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Найдем, сначала полупериод ( small p ) треугольника из формулы (3):

Как найти bh в треугольнике

Подставляя значения ( small a , b, c ) и ( small p ) в (4), получим:

Как найти bh в треугольнике

Ответ: Как найти bh в треугольнике

Видео:В треугольнике ABC проведены медиана BM и высота BH. Известно, что AC = 2 и BC = BM. Найдите AHСкачать

В треугольнике ABC проведены медиана BM и высота BH. Известно, что AC = 2 и BC = BM. Найдите AH

Высота треугольника по двум сторонам и радиусу описанной окружности

Как найти bh в треугольнике

Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:

Как найти bh в треугольнике(5)
Как найти bh в треугольнике(6)

Далее, из теоремы синусов имеем:

Как найти bh в треугольнике(7)

Подставляя (6) в (7), получим:

Как найти bh в треугольнике
Как найти bh в треугольнике(8)

Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:

(small max (b,c) ≤2R Пример 3. Известны стороны треугольника: ( small b=7, ) ( small c= 3 ) и радиус описанной окружности ( small R=4. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Проверим сначала условие (9):

(small max (7,3) ≤2 cdot 4 Ответ: ( small 2frac. )

Видео:Задача 6 №27357 ЕГЭ по математике. Урок 46Скачать

Задача 6 №27357 ЕГЭ по математике. Урок 46

Высота треугольника по стороне и прилежащему к ней углу

Как найти bh в треугольнике

Найдем высоту ( small h_a ) треугольника на рисунке 7. Из теоремы синусов имеем:

( small frac=frac, )
( small h_a=c cdot sin angle B. )(11)

Пример 4. Известны сторона ( small c=12 ) треугольника и прилежащий угол ( small angle B=30°. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Для нахождения высоты треугольника подставим значения ( small c=12 ) и ( small angle B=30° ) в (11). Имеем:

Видео:Досрочный ОГЭ Математика. Задание 16.Скачать

Досрочный ОГЭ Математика. Задание 16.

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Видео:В треугольнике ABC BM – медиана и BH – высота ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать

В треугольнике ABC BM – медиана и BH – высота ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРА

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Как найти bh в треугольнике

1. Через площадь и длину стороны

Как найти bh в треугольнике

где S – площадь треугольника.

2. Через длины всех сторон

Как найти bh в треугольнике

где p – это полупериметр треугольника, который рассчитывается так:

Как найти bh в треугольнике

3. Через длину прилежащей стороны и синус угла

Как найти bh в треугольнике

4. Через стороны и радиус описанной окружности

Как найти bh в треугольнике

Как найти bh в треугольнике

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Как найти bh в треугольнике

Как найти bh в треугольнике

Высота в прямоугольном треугольнике

Как найти bh в треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Как найти bh в треугольнике

2. Через стороны треугольника

Как найти bh в треугольнике

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Как найти bh в треугольнике

Как найти bh в треугольнике

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Как найти bh в треугольнике

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Высота треугольника

Как найти bh в треугольнике Как найти bh в треугольнике

Средняя оценка: 4.6

Всего получено оценок: 80.

Средняя оценка: 4.6

Всего получено оценок: 80.

Почти никогда не получится определить все параметры треугольника без дополнительных построений. Эти построения являются своеобразными графическими характеристиками треугольника, которые помогают определить величину сторон и углов.

Как найти bh в треугольнике

Видео:16)В остроугольном треугольнике ABC проведена высота BH, угол BAC=48°. Найдите угол ABH. Ответ дайтеСкачать

16)В остроугольном треугольнике ABC проведена высота BH, угол BAC=48°. Найдите угол ABH. Ответ дайте

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя отрезками составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, нестандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Как правило, высоту треугольника обозначают буквой h. Также обозначается высота и в других фигурах.

Видео:В треугольнике ABC AC=BC=27, AH — высота, sin BAC= 2/3 . Найдите BH.Скачать

В треугольнике ABC AC=BC=27, AH — высота,  sin BAC= 2/3 . Найдите BH.

Как найти высоту треугольника?

Существует три стандартных способа нахождения высоты треугольника:

Через теорему Пифагора

Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.

Дано: равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.

Как найти bh в треугольникеРис. 2. Рисунок к задаче.

Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.

Свойства высоты равнобедренного треугольника, проведенной к основанию:

  • Высота совпадает с медианой и биссектрисой
  • Делит основание на две равные части.

Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4

Высота – это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВD является катетом этого треугольника.

Найдем высоту по теореме Пифагора: $$BD=sqrt=sqrt=3$$

Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.

Через площадь треугольника

Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.

Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.

Формула площади треугольника: $$S=*bh$$, где b – это сторона треугольника ,а h – высота, проведенная к этой стороне. Выразим из формулы высоту:

Если площадь равна 15, сторона 5, то высота $$h=2*=6$$

Через тригонометрическую функцию

Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.

Как найти bh в треугольникеРис. 3. Рисунок к задаче.

Угол ВСН=30 градусам , а сторона BC=8. У нас все тот же прямоугольный треугольник BCH. Воспользуемся определением косинуса угла прямоугольного треугольника. Косинус острого угла – это отношение прилежащего катета к гипотенузе, значит: BH/BC=cos BCH, а угол BCH равен 60 градусам, так как сумма острых углов прямоугольного треугольника равна 90 градусам.

Угол известен, как и сторона. Выразим высоту треугольника:

Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.

Как найти bh в треугольнике

Видео:В треугольнике ABC AC = BC, AH – высота, AB = 5, sinBAC = 7/25 . Найдите BH.Скачать

В треугольнике ABC AC = BC, AH – высота, AB = 5,  sinBAC = 7/25 . Найдите BH.

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

🔍 Видео

№492. Найдите высоты треугольника со сторонами 10 см, 10 см и 12 см.Скачать

№492. Найдите высоты треугольника со сторонами 10 см, 10 см и 12 см.

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

В треугольнике ABC угол C равен 90°, CH – высота, AB = 13, тангенс A =1/5. Найдите AH.Скачать

В треугольнике ABC угол C равен 90°, CH – высота, AB = 13,  тангенс A =1/5. Найдите AH.

15 задание ОГЭ по математике 2023 Треугольник Shorts #shorts #огэпоматематике2023 #треугольникСкачать

15 задание ОГЭ по математике 2023  Треугольник Shorts #shorts #огэпоматематике2023 #треугольник
Поделиться или сохранить к себе: