Как нарисовать окружность с градусами

Тригонометрический круг. Основные значения тригонометрических функций

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, тригонометрический круг :

Как нарисовать окружность с градусами

Мы же здесь будем все подробно разбирать шаг за шагом + показать

Тригонометрический круг – не роскошь, а необходимость

Как нарисовать окружность с градусамиТригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций, – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит тригонометрический круг ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, Как нарисовать окружность с градусамиградусов, или Как нарисовать окружность с градусами.

Как нарисовать окружность с градусами

Никак. можно, конечно, подключить формулы приведения… А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

Как нарисовать окружность с градусами

Как нарисовать окружность с градусами

И, наконец, такой:

Как нарисовать окружность с градусами

Конечно, понятно, что, на самом-то деле, на первом месте стоит Как нарисовать окружность с градусами, на втором месте стоит Как нарисовать окружность с градусами, а на последнем – Как нарисовать окружность с градусами. То есть нас будет больше интересовать цепочка Как нарисовать окружность с градусами.

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы Как нарисовать окружность с градусами.

Как нарисовать окружность с градусамиПолучаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип, который позволит справиться и с другими, аналогичными ситуациями.

Как нарисовать окружность с градусами

Треугольник АОВ – прямоугольный, в нем Как нарисовать окружность с градусами. А мы знаем, что против угла в Как нарисовать окружность с градусамилежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть Как нарисовать окружность с градусами).

Значит, АВ= Как нарисовать окружность с градусами(а следовательно, и ОМ=Как нарисовать окружность с градусами). А по теореме Пифагора Как нарисовать окружность с градусами

Как нарисовать окружность с градусами

Надеюсь, уже что-то становится понятно?

Как нарисовать окружность с градусами

Как нарисовать окружность с градусами

Так вот точка В и будет соответствовать значению Как нарисовать окружность с градусами, а точка М – значению Как нарисовать окружность с градусами

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . Про тангенс и котангенс позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ тригонометрический круг , без которого никуда в тригонометрии.

Как нарисовать окружность с градусами

А вот как пользоваться тригонометрическим кругом, мы поговорим в следующей статье.

Видео:Школа для родителей. Циркуль, окружность, радиус, диаметр.Скачать

Школа для родителей. Циркуль, окружность, радиус, диаметр.

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Как нарисовать окружность с градусами

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).Скачать

    КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Как нарисовать пятиконечную ЗВЕЗДУ с помощью циркуляСкачать

    Как нарисовать пятиконечную ЗВЕЗДУ с помощью циркуля

    Единичная окружность

    Как нарисовать окружность с градусами

    О чем эта статья:

    10 класс, ЕГЭ/ОГЭ

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Видео:Деление окружности на 3; 6; 12 равных частейСкачать

    Деление окружности на 3; 6; 12 равных частей

    Единичная окружность в тригонометрии

    Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

    Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

    Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

    Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

    Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

    Как нарисовать окружность с градусами

    Поясним, как единичная окружность связана с тригонометрией.

    В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

    Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

    Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

    Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

    • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
    • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
    • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
    • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

    Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

    Как нарисовать окружность с градусами

    Радиан — одна из мер для определения величины угла.

    Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

    Число радиан для полной окружности — 360 градусов.

    Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

    Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

    Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

    • 2π радиан = 360°
    • 1 радиан = (360/2π) градусов
    • 1 радиан = (180/π) градусов
    • 360° = 2π радиан
    • 1° = (2π/360) радиан
    • 1° = (π/180) радиан

    Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

    Уравнение единичной окружности

    При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

    Как нарисовать окружность с градусами

    Как нарисовать окружность с градусами

    Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

    📽️ Видео

    Круг в перспективеСкачать

    Круг в перспективе

    Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать

    Аксонометрические Проекции Окружности  #черчение #окружность #проекции #изометрия

    Как начертить овал. Эллипс вписанный в ромбСкачать

    Как начертить овал. Эллипс вписанный в ромб

    ТЫ НИКОГДА НЕ СМОЖЕШЬ НАРИСОВАТЬ ИДЕАЛЬНЫЙ КРУГ!!! #shortsСкачать

    ТЫ НИКОГДА НЕ СМОЖЕШЬ НАРИСОВАТЬ ИДЕАЛЬНЫЙ КРУГ!!! #shorts

    ПРИЕМЫ РАБОТЫ С ЧЕРТЕЖНЫМ ИНСТРУМЕНТОМ. Линии чертежа. Видео для начинающихСкачать

    ПРИЕМЫ РАБОТЫ С ЧЕРТЕЖНЫМ ИНСТРУМЕНТОМ. Линии чертежа. Видео для начинающих

    Как на ЕГЭ нарисовать окружность с помощью линейки без циркуля?Скачать

    Как на ЕГЭ нарисовать окружность с помощью линейки без циркуля?

    КАК РИСОВАТЬ ЭЛЛИПСЫ. Простой и быстрый способ рисования ЭЛЛИПСОВСкачать

    КАК РИСОВАТЬ ЭЛЛИПСЫ. Простой и быстрый способ рисования ЭЛЛИПСОВ

    ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

    ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

    Как нарисовать ШАР (сфера). Построение , штриховка.Скачать

    Как нарисовать ШАР (сфера). Построение , штриховка.

    нарисовать круг за 3 секундыСкачать

    нарисовать круг за 3 секунды

    Как начертить три линии под 120 градусов и шестиугольникСкачать

    Как начертить три линии под 120 градусов и шестиугольник

    как рисовать круг, сектор и дугуСкачать

    как рисовать круг, сектор и дугу

    ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61Скачать

    ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61

    5 ПРОСТЫХ ЛАЙФХАКОВ ДЛЯ ШКОЛЫ | Как нарисовать круг без циркуляСкачать

    5 ПРОСТЫХ ЛАЙФХАКОВ ДЛЯ ШКОЛЫ | Как нарисовать круг без циркуля

    Изображение окружности в перспективе. Эллипс.Скачать

    Изображение окружности в перспективе. Эллипс.

    Как нарисовать идеальную окружность без циркуля на ЕГЭ 2022 по математике?Скачать

    Как нарисовать идеальную окружность без циркуля на ЕГЭ 2022 по математике?
    Поделиться или сохранить к себе: