- Метки
- Построение овала
- Как построить эллипс имея окружность
- Эллипс — свойства, уравнение и построение фигуры
- Определение и элементы эллипса
- Основные свойства эллипса
- Уравнение эллипса
- Площадь эллипса
- Площадь сегмента эллипса
- Длина дуги эллипса
- Радиус круга, вписанного в эллипс
- Радиус круга, описанного вокруг эллипса
- Как построить эллипс
- Эллипс — свойства, уравнение и построение фигуры
- Определение и элементы эллипса
- Основные свойства эллипса
- Уравнение эллипса
- Площадь эллипса
- Площадь сегмента эллипса
- Длина дуги эллипса
- Радиус круга, вписанного в эллипс
- Радиус круга, описанного вокруг эллипса
- Как построить эллипс
- Эллипс — определение и вычисление с примерами решения
- Эллипс в высшей математике
- Уравнение эллипсоида
- Приемы построения эллипса
Метки
Видео:Как начертить эллипс. Уроки черчения.Скачать

Построение овала
Рассмотрим построение овала двумя методами: окружности и параллелограмма.
Воспользуемся методом окружности.
1.) Начинаем чертить с построения осей.
2.) Чертим окружность 
3.) Чертим дуги ЕА и BD радиусом ЕС

4.) Чертим дуги ED и AB радиусом FB
Применим метод параллелограмма.
1.) Начинаем с построения осевых линий
2.) Чертим линии параллельные осевым линиям. Где d — диаметр окружности.


Применение построения овала на чертежах вы можете посмотреть здесь
Видео:Как начертить овал. Эллипс вписанный в ромбСкачать

Как построить эллипс имея окружность
Видео:ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61Скачать

Эллипс — свойства, уравнение и построение фигуры
Среди центральных кривых второго порядка особое место занимает эллипс, близкий к окружности, обладающий похожими свойствами, но всё же уникальный и неповторимый.
Видео:Как начертить овал. Уроки черчения.Скачать

Определение и элементы эллипса
Множество точек координатной плоскости, для каждой из которых выполняется условие: сумма расстояний до двух заданных точек (фокусов) есть величина постоянная, называется эллипсом.
По форме график эллипса представляет замкнутую овальную кривую:
Наиболее простым случаем является расположение линии так, чтобы каждая точка имела симметричную пару относительно начала координат, а координатные оси являлись осями симметрии.
Отрезки осей симметрии, соединяющие две точки эллипса, называются осями. Различаются по размерам (большая и малая), а их половинки, соответственно, считаются полуосями.
Точки эллипса, являющиеся концами осей, называются вершинами.
Расстояния от точки на линии до фокусов получили название фокальных радиусов.
Расстояние между фокусами есть фокальное расстояние.
Отношение фокального расстояния к большей оси называется эксцентриситетом. Это особая характеристика, показывающая вытянутость или сплющенность фигуры.
Видео:Эллипс - Инженерная графика.Скачать

Основные свойства эллипса
имеются две оси и один центр симметрии;
при равенстве полуосей линия превращается в окружность;
все точки фигуры лежат внутри прямоугольника со сторонами, равными большой и малой осям эллипса, проходящими через вершины параллельно осям.
Видео:Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать

Уравнение эллипса
Пусть линия расположена так, чтобы центр симметрии совпадал с началом координат, а оси – с осями координат.
Для составления уравнения достаточно воспользоваться определением, введя обозначение:
а – большая полуось (в наиболее простом виде её располагают вдоль оси Оx) (большая ось, соответственно, равна 2a);
c – половина фокального расстояния;
M(x;y) – произвольная точка линии.
В этом случае фокусы находятся в точках F1(-c;0); F2(c;0)
После ввода ещё одного обозначения
получается наиболее простой вид уравнения:
a 2 b 2 — a 2 y 2 — x 2 b 2 = 0,
a 2 b 2 = a 2 y 2 + x 2 b 2 ,
Параметр b численно равен полуоси, расположенной вдоль Oy (a > b).
В случае (b b) формула эксцентриситета (ε) принимает вид:
Чем меньше эксцентриситет, тем более сжатым будет эллипс.
Видео:Как начертить овал во фронтальной плоскостиСкачать

Площадь эллипса
Площадь фигуры (овала), ограниченной эллипсом, можно вычислить по формуле:
a – большая полуось, b – малая.
Видео:Изображение окружности в перспективе. Эллипс.Скачать

Площадь сегмента эллипса
Часть эллипса, отсекаемая прямой, называется его сегментом.
Видео:Как начертить овал в профильной плоскостиСкачать

Длина дуги эллипса
Длина дуги находится с помощью определённого интеграла по соответствующей формуле при введении параметра:
Видео:КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).Скачать

Радиус круга, вписанного в эллипс
В отличие от многоугольников, круг, вписанный в эллипс, касается его только в двух точках. Поэтому наименьшее расстояние между точками эллипса (содержащее центр) совпадает с диаметром круга:
Видео:Как начертить овал в горизонтальной плоскостиСкачать

Радиус круга, описанного вокруг эллипса
Окружность, описанная около эллипса, касается его также только в двух точках. Поэтому наибольшее расстояние между точками эллипса совпадает с диаметром круга:
Онлайн калькулятор позволяет по известным параметрам вычислить остальные, найти площадь эллипса или его части, длину дуги всей фигуры или заключённой между двумя заданными точками.
Видео:Как разметить эллипс, Как нарисовать эллипсСкачать

Как построить эллипс
Построение линии удобно выполнять в декартовых координатах в каноническом виде.
Строится прямоугольник. Для этого проводятся прямые:
Сглаживая углы, проводится линия по сторонам прямоугольника.
Полученная фигура есть эллипс. По координатам отмечается каждый фокус.
При вращении вокруг любой из осей координат образуется поверхность, которая называется эллипсоид.
Видео:КАК РИСОВАТЬ ЭЛЛИПСЫ. Простой и быстрый способ рисования ЭЛЛИПСОВСкачать

Эллипс — свойства, уравнение и построение фигуры
- Определение и элементы эллипса
- Основные свойства эллипса
- Уравнение эллипса
- Площадь эллипса
- Площадь сегмента эллипса
- Длина дуги эллипса
- Радиус круга, вписанного в эллипс
- Радиус круга, описанного вокруг эллипса
- Как построить эллипс
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Определение и элементы эллипса
Множество точек координатной плоскости, для каждой из которых выполняется условие: сумма расстояний до двух заданных точек (фокусов) есть величина постоянная, называется эллипсом.
 
По форме график эллипса представляет замкнутую овальную кривую:
Наиболее простым случаем является расположение линии так, чтобы каждая точка имела симметричную пару относительно начала координат, а координатные оси являлись осями симметрии.
Отрезки осей симметрии, соединяющие две точки эллипса, называются осями. Различаются по размерам (большая и малая), а их половинки, соответственно, считаются полуосями.
Точки эллипса, являющиеся концами осей, называются вершинами.
Расстояния от точки на линии до фокусов получили название фокальных радиусов.
Расстояние между фокусами есть фокальное расстояние.
Отношение фокального расстояния к большей оси называется эксцентриситетом. Это особая характеристика, показывающая вытянутость или сплющенность фигуры.
Видео:построение эллипсаСкачать

Основные свойства эллипса
имеются две оси и один центр симметрии;
при равенстве полуосей линия превращается в окружность;
все точки фигуры лежат внутри прямоугольника со сторонами, равными большой и малой осям эллипса, проходящими через вершины параллельно осям.
Видео:Как начертить эллипс (овал) на потолкеСкачать

Уравнение эллипса
Пусть линия расположена так, чтобы центр симметрии совпадал с началом координат, а оси – с осями координат.
 
Для составления уравнения достаточно воспользоваться определением, введя обозначение:
а – большая полуось (в наиболее простом виде её располагают вдоль оси Оx) (большая ось, соответственно, равна 2a);
c – половина фокального расстояния;
M(x;y) – произвольная точка линии.
В этом случае фокусы находятся в точках F1(-c;0); F2(c;0)
 
 
После ввода ещё одного обозначения
получается наиболее простой вид уравнения:
a2b2 — a2y2 — x2b2 = 0,
a2b2 = a2y2 + x2b2,
 
Параметр b численно равен полуоси, расположенной вдоль Oy (a > b).
В случае (b b) формула эксцентриситета (ε) принимает вид:
 
 
Чем меньше эксцентриситет, тем более сжатым будет эллипс.
Видео:Овал по заданным осям . Геометрические построения.Скачать

Площадь эллипса
Площадь фигуры (овала), ограниченной эллипсом, можно вычислить по формуле:
 
 
a – большая полуось, b – малая.
Видео:ЭллипсСкачать

Площадь сегмента эллипса
Часть эллипса, отсекаемая прямой, называется его сегментом.

(xo;y0) – крайняя точка сегмента.
Видео:2 2 3 построение изометрии окружностиСкачать

Длина дуги эллипса
Длина дуги находится с помощью определённого интеграла по соответствующей формуле при введении параметра:
 
Видео:Как быстро нарисовать овал, эллипс с помощью нитки и двух кнопок. Принцип золотого сечения.Скачать

Радиус круга, вписанного в эллипс
В отличие от многоугольников, круг, вписанный в эллипс, касается его только в двух точках. Поэтому наименьшее расстояние между точками эллипса (содержащее центр) совпадает с диаметром круга:
Радиус круга, описанного вокруг эллипса
Окружность, описанная около эллипса, касается его также только в двух точках. Поэтому наибольшее расстояние между точками эллипса совпадает с диаметром круга:
Онлайн калькулятор позволяет по известным параметрам вычислить остальные, найти площадь эллипса или его части, длину дуги всей фигуры или заключённой между двумя заданными точками.
Как построить эллипс
Построение линии удобно выполнять в декартовых координатах в каноническом виде.
 
 
Строится прямоугольник. Для этого проводятся прямые:
 
Сглаживая углы, проводится линия по сторонам прямоугольника.
Полученная фигура есть эллипс. По координатам отмечается каждый фокус.
При вращении вокруг любой из осей координат образуется поверхность, которая называется эллипсоид.
Эллипс — определение и вычисление с примерами решения
Эллипс:
Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек 
Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы 
Рис. 29. Вывод уравнения эллипса.
Расстояние между фокусами (фокусное расстояние) равно 



соответственно. Следовательно, согласно определению имеем
Возведем обе части равенства в квадрат, получим
Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим 











- т.е. точками пересечения эллипса с осью абсцисс будут точки 
- т.е. точками пересечения эллипса с осью ординат будут точки - (Рис. 30). 
Определение: Найденные точки называются вершинами эллипса.
Рис. 30. Вершины, фокусы и параметры эллипса
Определение: Если 
Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса 
Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству 
Если 

Пример:
Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет 
Решение:
Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр 

Пример:
Найти площадь треугольника, две вершины которого находятся в фокусах эллипса 
Решение:
Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс: 








Построим в декартовой системе координат треугольник 





Эллипс в высшей математике
где 


Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное 






При 






Полученная линия называется эллипсом. Число 






Пример:
Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.
Решение:
Возьмем две плоскости, пересекающиеся под углом 





Пусть точка 

Обозначим проекцию точки 



















а это есть уравнение эллипса с полуосями 

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.
Замечание. Окружность можно рассматривать как эллипс с равными полуосями.
Уравнение эллипсоида
Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.
Рассмотрим сферу радиуса R с центром в начале координат:
где Х, У, Z — текущие координаты точки сферы.
Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей 
В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам 





Подставляя эти формулы в уравнение (1), будем иметь
где 
Величины 

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями
а = b = 6377 км и с = 6356 км.
Если а = b = с, то эллипсоид превращается в сферу.
| Рекомендую подробно изучить предметы: | 
| 
 | 
| Ещё лекции с примерами решения и объяснением: | 
- Гипербола
- Парабола
- Многогранник
- Решение задач на вычисление площадей
- Шар в геометрии
- Правильные многогранники в геометрии
- Многогранники
- Окружность
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Приемы построения эллипса
Эллипс может быть построен как лекальная и как циркульная кривая.
Лекальная кривая строится по точкам, которые затем плавно соединяются от руки или при помощи лекала (способ 1).
Циркульная кривая строится при помощи циркуля как кривая, состоящая из четырёх сопрягающихся дуг окружностей (способы 2, 3).
Рассмотрим построение эллипса в аксонометрической плоскости х’О’у’. Аналогичными будут построения в других плоскостях. Только необходимо учитывать ориентацию осей эллипса. Возьмём окружность произвольного радиуса и построим её прямоугольную изометрию и диметрию разными способами, заготовив предварительно треугольники пропорциональности (рис. 84).
Способ L Лекальная кривая. Строим аксонометрию по восьми точкам, которыми будут являться концы осей и сопряжённых диаметров.
 
 
В прямоугольной изометрии (рис. 85, а) приведённые коэффициенты искажения по всем осям равны 1. Поэтому на осях х’ и у’ от центра О‘ откладываем радиус 7? окружности, на оси г’ — малую полуось эллипса 0,717?, на прямой, перпендикулярной z’, — большую его полуось 1,22R.
Для определения размеров большой и малой полуосей эллипса откладываем на натуральной шкале (1:1) треугольника пропорциональности для изометрии радиус окружности R, и из точки А проецируем его на остальные шкалы. На верхней шкале получаем размер 1,227?, на нижней — 0,71 R.
В прямоугольной диметрии (рис. 85, 6) по осям х’ и z’ коэффициент искажения равен 7, по оси у-0,5. Поэтому на оси х’ откладываем радиус R. Остальные размеры определяем при помощи треугольника пропорциональности для диметрии. На натуральной шкале (1:1) откладываем радиус R и через точку А и конец этого отрезка проводим проецирующий луч. На шкале 0,5 получаем размер 0,57? для оси у на шкале 0,35 — размер 0,357? малой полуоси эллипса, который откладываем на z’. Размер 1,067? большой полуоси берём со шкалы 1,06 и откладываем его на прямой, перпендикулярной z’.
Полученные восемь точек в обоих случаях предпочтительнее соединить при помощи лекала.
 
Примечание. Размеры осей эллипса для прямоугольной изометрии можно определить и графически (рис. 86). Для этого из концов С и D взаимно перпендикулярных диаметров окружности проводим дуги радиусом CD до взаимного пересечения в точках А и В. Соединив точки А и В, получим большую ось эллипса, равную 1,22D, а отрезок CD будет его малой осью, равной 0,7 Ш.
Способ 2. Коробовая кривая. Коробовая кривая является циркульной кривой, состоящей из четырёх дуг окружностей (рис. 87). Ею можно заменить эллипс. Строится она по его осям.
На рис. 87 коробовая кривая построена в прямоугольной изометрии. Малая ось CD направлена вдоль аксонометрической оси z большая АВ ей перпендикулярна. Построение выполняем в определённой последовательности.
- • Соединяем концы большой и малой полуосей (отрезок A Q.
- • Находим разность большой и малой полуосей (отрезок СЕ). Для этого из центра О‘ радиусом О’А проводим дугу до пересечения с прямой, проходящей через CD, в точке Е.
- • Откладываем СЕ от точки С на АС. Получаем точку F.
- • Строим срединный перпендикуляр к отрезку AF и отмечаем точки пересечения его с прямыми линиями, проходящими через оси эллипса. 0 и 02 — центры двух дуг окружностей.
На рис. 88 построена прямоугольная диметрия окружности в плоскости x’O’z’ в виде коробовой кривой. Малая ось CD направлена вдоль оси у’ и равна 0,95D. Большая ось АВ ±у’ и равна 1,060. Последовательность построения та же, что была рассмотрена выше для изометрии.
Этот метод является универсальным и может применяться не только для построения аксонометрии окружности, но и любого эллипса или овала, если известны размеры его большой и малой оси, чем широко пользуются при конструировании технических деталей.
Способ 3. Овал. Построим прямоугольную изометрию окружности в плоскости х’О’у’, заменяя эллипс овалом (рис. 89)
Задаём аксонометрические оси х’, у’, z’ и направление большой оси эллипса (перпендикулярно z’). Из центра эллипса проводим окружность радиусом, равным радиусу той окружности, аксонометрию которой строим. На пересечении этой окружности с направлением малой оси эллипса (осью z’) получаем два центра дуг 0 и 02. Проводим прямые через 0 и точки Е, L (или через 02 и точки К, F) пересечения окружности с осями х’, у’. На пересечении их с направлением большой оси получаем ещё два центра — 03 и 04. Затем последовательно проводим из центра 0 дугу EL радиусом 0Е, из центра 04 — дугу LF радиусом Оф?, из 02 — дугу FK радиусом 02F, из 03 — дугу КЕ радиусом 02К. Построенный овал неточно повторяет форму эллипса. У них имеются небольшие расхождения в размерах. Таким приёмом можно построить овал только в прямоугольной изометрии.
На рис. 90 показано построение овала, заменяющего эллипс в прямоугольной диметрии. Овал строится по осям и пригоден только для эллипсов, у которых малая ось в три раза меньше большой оси (в плоскостях х’О’у’иг’ОУ). Рассмотрим построение овала в плоскости х’О’у’.
Проводим две взаимно перпендикулярные прямые. Одну вертикально (параллельно z% другую горизонтально. Точка пересечения прямых будет центром О эллипса. Отрезки АВ и CD — соответственно большая и малая ось эллипса. По обе стороны от центра О на прямой, проходящей через малую ось CD, откладываем отрезки, равные длине большой оси АВ эллипса. Получаем центры 0 и 02 двух дуг окружностей. Центры 03 и 04 двух других дуг окружностей удалены от концов А и В большой оси эллипса на расстояние 1/4CD. Соединяем попарно центры и между линиями центров проводим дуги: из 0 радиусом Оф, из 04 радиусом О4В, из 02 радиусом 02С, из 03 радиусом 6М. Как следует из построений, радиусы сопрягающихся дуг равны R = АВ + 1/2CD, г = 1/4CZ).
Коробовая кривая и овал представляют собой кривые, приближенные к эллипсу. Существуют и другие способы построения эллипса.

























































 т.е. точками пересечения эллипса с осью абсцисс будут точки
т.е. точками пересечения эллипса с осью абсцисс будут точки 
 т.е. точками пересечения эллипса с осью ординат будут точки
т.е. точками пересечения эллипса с осью ординат будут точки  (Рис. 30).
(Рис. 30).
























