Как доказать что треугольник равнобедренный

Равнобедренный треугольник: свойства, признаки и формулы

Как доказать что треугольник равнобедренный

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

Как доказать что треугольник равнобедренный

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Как доказать что треугольник равнобедренный

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Как доказать что треугольник равнобедренный

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Как доказать что треугольник равнобедренный

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Как доказать что треугольник равнобедренный

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Как доказать что треугольник равнобедренный

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, AH = HC и BH — медиана.

Видео:Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Как доказать что треугольник равнобедренный

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Геометрия. 7 класс

Конспект урока

Перечень рассматриваемых вопросов:

  • Понятие равнобедренного, равностороннего треугольника.
  • Формулировка и доказательство теоремы о свойствах равнобедренного треугольника.
  • Признак равнобедренного треугольника.
  • Измерения и вычисления в равнобедренном треугольнике.

Биссектриса угла треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

Равнобедренный треугольник – треугольник, у которого две стороны равны.

Равносторонний треугольник – треугольник, у которого все стороны равны.

Любой равносторонний треугольник является равнобедренным, обратное не верно.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже познакомились с такими понятиями как треугольник, рассмотрели его виды.

Рассмотрим такие виды треугольников: как равнобедренные и равносторонние, более подробно. Начнём с описания равнобедренного треугольника. Но для начала, дадим ему определение.

Треугольник называется равнобедренным, если две его стороны равны.

Как доказать что треугольник равнобедренный

В равнобедренном треугольнике равные стороны называются боковыми, а третья сторона – основанием.

AB и BC – боковые стороны ∆ABC.

AC – основание ∆ABC.

Если третья сторона равна двум другим, то любая сторона может быть основанием.

Теперь рассмотрим треугольник, у которого все стороны равны. Такой треугольник называется равносторонним.

Как доказать что треугольник равнобедренный

Докажем две теоремы о свойствах равнобедренного треугольника.

Теорема: В равнобедренном треугольнике углы при основании равны.

Как доказать что треугольник равнобедренный

  1. Проведем биссектрису АF.
  2. ∆ABF = ∆ACF (т.к. AF – общая сторона); ∠BAF = ∠CAF (AF –по определению биссектрисы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника).
  3. ∠B = ∠C.

Теперь сформулируем теорему о биссектрисе, медиане и высоте равнобедренного треугольника, проведённых к основанию.

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой треугольника.

BC– основание ΔABC

AF– биссектриса ΔABC

Доказать: AF – медиана и высота.

Как доказать что треугольник равнобедренный

  1. ∆ABF = ∆ACF (т.к. AF – общая сторона); ∠BAF = ∠CAF (AF – по определению биссектрисы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника) → BF = FC как соответствующие элементы равных треугольников.
  2. F – середина BC → AF – медиана (по определению медианы треугольника).
  3. ∠AFB =∠AFC (как соответствующие элементы равных треугольников), их сумма равна 180 градусам (по свойству развернутого угла).
  4. ∠AFB = ∠AFC = 90° →AF – высота треугольника (по определению высоты).

Справедливы и следующие утверждения.

Высота равнобедренного треугольника, проведённая к основанию, является медианой и биссектрисой.

А медиана равнобедренного треугольника, проведённая к основанию, является высотой и биссектрисой.

BC– основание ΔABC

AF – медиана ∠ВАС ΔABC

Доказать: AF – биссектриса и высота ΔABC.

Как доказать что треугольник равнобедренный

∆ABF = ∆ACF т. к. ∠В = ∠С (по свойству равнобедренного треугольника); BF = CF (по определению медианы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника) → ∠BАF = ∠FАC (как соответствующие элементы равных треугольников) => AF ‑ биссектриса ΔABC (по определению биссектрисы треугольника).

∠AFB = ∠AFC как соответствующие элементы равных треугольников, но их сумма равна 180 (по свойству развернутого угла).

∠AFB = ∠AFC = 90° →AF – высота треугольника (по определению высоты треугольника).

Сегодня мы узнали, что такое равнобедренный, равносторонний треугольник, рассмотрели свойства равнобедренного треугольника.

Разберем задачу на доказательство.

Рассмотрим, как можно решить задачу на доказательство, используя понятие: «медиана равнобедренного треугольника».

На рисунке изображён треугольник ABC, при этом AM – медиана, при этом AM = BM. Докажем, что угол А равен сумме двух других углов ∆ABC.

Как доказать что треугольник равнобедренный

По условию AМ = ВМ → ∆АВМ – равнобедренный (по определению равнобедренного треугольника)→ ∠МВА = ∠ВАМ (по свойству равнобедренного треугольника).

Т. к. АМ – медиана ∆ABC и AМ = ВМ → AМ = ВМ = СМ → ∆АМС – равнобедренный (по определению равнобедренного треугольника) → ∠МСА = ∠ВАС (по свойству равнобедренного треугольника).

Получаем, что ∠А = ∠ВАС + ∠ВАМ = ∠МВА + ∠МСА = ∠В + ∠С.

Что и требовалось доказать.

Разбор решения заданий тренировочного модуля.

Периметр равнобедренного треугольника ABC равен 50 см, боковая сторона AC на 4 см больше основания BC. Найдите основание треугольника.

Решение: Пусть х – основание ВС треугольника АВС, тогда АС = АВ (как боковые стороны равнобедренного треугольника).

АС = АВ = х + 4 (по условию).

Периметр треугольника АВС равен сумме всех его сторон, т. е. 50 см = АС + ВС + АВ,

50 = (х + 4) + (х + 4) + х,

х = 14 см – основание BC.

На рисунке изображён равнобедренный треугольник ABC. AC – основание треугольника, ∠1 = 120. Найдите ∠2.

Как доказать что треугольник равнобедренный

Решение: ∠1 и ∠АСВ – смежные →∠1 + ∠АСВ = 180, значит:

∠АСВ = 180 – 120 = 60

АВС – равнобедренный, значит: ∠ВАС = ∠АСВ = 60 (углы при основании равнобедренного треугольника равны).

Видео:Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать

Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.

Как доказать что треугольник равнобедренный

Как доказать что треугольник равнобедренный

Из этой теоремы следует, что в треугольнике против равных углов лежат равные стороны .

Как доказать что треугольник равнобедренный

Если медиана треугольника является его биссектрисой, то этот треугольник равнобедренный.

Как доказать что треугольник равнобедренный

Рассмотрим треугольник ABC , у которого отрезок BM — медиана и биссектриса. Надо доказать, что AB = BC .

На луче BM отложим отрезок MD , равный отрезку BM (рис. 171).

В треугольниках AMD и CMB имеем: AM = MC (так как по условию BM — медиана), BM = MD по построению, углы AMD и CMB равны как вертикальные. Следовательно, треугольники AMD и CMB равны по первому признаку равенства треугольников.

Тогда стороны AD и BC , углы ADM и CBM равны как соответственные элементы равных треугольников.

Так как BD — биссектриса угла ABC , то ∠ ABM = ∠ CBM . Поскольку ∠ CBM = ∠ ADM , то получаем, что ∠ ABM = ∠ ADM .

Тогда по теореме 10.3 получаем, что треугольник DAB — равнобедренный, откуда AD = AB . И уже доказано, что AD = BC . Следовательно, AB = BC . Как доказать что треугольник равнобедренный

Как доказать что треугольник равнобедренный

Задача. В треугольнике ABC проведена биссектриса BM (рис. 172), ∠ BAK = 70°, ∠ AKC = 110°. Докажите, что BM ⊥ AK .

Решение. Так как углы BKA и AKC — смежные, то ∠ BKA = 180° — ∠ AKC . Тогда ∠ BKA = 180° — 110° = 70°.

Следовательно, в треугольнике ABK получаем, что ∠ BAK = ∠ BKA = 70°. Треугольник ABK — равнобедренный с основанием AK , и его биссектриса BO ( O — точка пересечения AK и BM ) является также высотой, т. е. BM ⊥ AK . Как доказать что треугольник равнобедренный

Как доказать что треугольник равнобедренный

  1. Сформулируйте признаки равнобедренного треугольника.
  2. Какова связь между равными углами и равными сторонами треугольника?

Как доказать что треугольник равнобедренный

Как доказать что треугольник равнобедренный

232. В треугольнике ABC медиана BK перпендикулярна стороне AC . Найдите ∠ ABC , если ∠ ABK = 25°.

233. Серединный перпендикуляр стороны AC треугольника ABC проходит через вершину B . Найдите ∠ C , если ∠ A = 17°.

Как доказать что треугольник равнобедренный

234. В треугольнике ABC известно, что ∠ ACB = 90°, ∠ A = ∠ B = 45°, CK — высота. Найдите сторону AB , если CK = 7 см.

235. На рисунке 173 ∠ AMK = ∠ ACB , AK = MK . Докажите, что ∆ ABC — равнобедренный.

236. Прямая, перпендикулярная биссектрисе угла A , пересекает его стороны в точках B и C . Докажите, что ∆ ABC — равнобедренный.

237. Биссектрисы AM и CK углов при основании AC равнобедренного треугольника ABC пересекаются в точке O . Докажите, что ∆ AOC — равнобедренный.

238. В треугольнике ABC биссектриса BK является его высотой. Найдите периметр треугольника ABC , если периметр треугольника ABK равен 16 см и BK = 5 см.

Как доказать что треугольник равнобедренный

239. Верно ли утверждение:

1) если медиана и высота треугольника, проведённые из одной вершины, не совпадают, то этот треугольник не является равнобедренным;

2) если биссектриса треугольника делит противолежащую сторону пополам, то этот треугольник равнобедренный?

240. Медианы AE и CF , проведённые к боковым сторонам BC и AB равнобедренного треугольника ABC , пересекаются в точке M . Докажите, что треугольник AMC — равнобедренный.

241. Точки M и K принадлежат соответственно боковым сторонам AB и BC равнобедренного треугольника ABC , AM = CK . Отрезки AK и CM пересекаются в точке O . Докажите, что ∆ AOC — равнобедренный.

Как доказать что треугольник равнобедренный

242. На сторонах AB и BC треугольника ABC отметили соответственно точки D и E так, что ∠ EAC = ∠ DCA . Отрезки AE и CD пересекаются в точке F , DF = EF . Докажите, что ∆ ABC — равнобедренный.

Как доказать что треугольник равнобедренный

243. Через середину D стороны AB треугольника ABC проведены прямые, перпендикулярные биссектрисам углов ABC и BAC . Эти прямые пересекают стороны AC и BC в точках M и K соответственно. Докажите, что AM = BK .

244. Медиана AM треугольника ABC перпендикулярна его биссектрисе BK . Найдите сторону AB , если BC = 16 см.

245. Прямая, проходящая через вершину A треугольника ABC перпендикулярно его медиане BD , делит эту медиану пополам. Найдите отношение длин сторон AB и AC треугольника ABC .

246. В треугольнике ABC известно, что ∠ C = 90°, ∠ A = 67,5°, ∠ B = 22,5°, CK — биссектриса треугольника ABC , CM — биссектриса треугольника BCK (рис. 174). Докажите, что точка M — середина отрезка AB .

Как доказать что треугольник равнобедренный

247. Длины сторон треугольника, выраженные в сантиметрах, равны трём идущим подряд натуральным числам. Найдите стороны этого треугольника, если одна из его медиан перпендикулярна одной из его биссектрис.

248. В треугольнике ABC известно, что AB = 3 см, BC = 4 см, AC = 6 см. На стороне BC отметили точку M такую, что CM = 1 см. Прямая, проходящая через точку M перпендикулярно биссектрисе угла ACB , пересекает отрезок AC в точке K , а прямая, проходящая через точку K перпендикулярно биссектрисе угла BAC , пересекает прямую AB в точке D . Найдите длину отрезка BD .

Как доказать что треугольник равнобедренный

Упражнения для повторения

249. На прямой последовательно отметили точки A , B , C , D , E и F так, что AB = BC = CD = DE = EF . Найдите отношения AB : CF , AB : BF , BD : AE .

250. Найдите углы, образованные при пересечении двух прямых, если один из них на 42° больше половины второго угла.

Как доказать что треугольник равнобедренный

Наблюдайте, рисуйте, конструируйте, фантазируйте

251. Разрежьте прямоугольник размером 4 × 9 на две равные части, из которых можно сложить квадрат.

📽️ Видео

№111. На рисунке 65 CD = BD, ∠1=∠2. Докажите, что треугольник ABC равнобедренный.Скачать

№111. На рисунке 65 CD = BD, ∠1=∠2. Докажите, что треугольник ABC равнобедренный.

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

№116. Докажите, что в равностороннем треугольнике все углы равны.Скачать

№116. Докажите, что в равностороннем треугольнике все углы равны.

Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольник

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Как распознать равнобедренный треугольник? #shortsСкачать

Как распознать равнобедренный треугольник? #shorts

ОГЭ Задание 25 Доказать что треугольник равнобедренныйСкачать

ОГЭ Задание 25 Доказать что треугольник равнобедренный

ПОМОГИТЕ ДОКАЗАТЬ Если две биссектрисы равны, то треугольник равнобедренныйСкачать

ПОМОГИТЕ ДОКАЗАТЬ Если две биссектрисы равны, то треугольник равнобедренный

Задание 25 Доказать что треугольник равнобедренныйСкачать

Задание 25 Доказать что треугольник равнобедренный

Геометрия. 7 класс. Теоремы. Т6. Второе свойство равнобедренного треугольника.Скачать

Геометрия. 7 класс. Теоремы. Т6. Второе свойство равнобедренного треугольника.

ОГЭ Задание 25 Доказать что треугольник равностороннийСкачать

ОГЭ Задание 25 Доказать что треугольник равносторонний

№947. Докажите, что треугольник ABC равнобедренный, и найдите его площадь, если вершины треугольникаСкачать

№947. Докажите, что треугольник ABC равнобедренный, и найдите его площадь, если вершины треугольника

Почему углы при основании равны в равнобедренном треугольникеСкачать

Почему углы при основании равны в равнобедренном треугольнике
Поделиться или сохранить к себе: