Видео:Задачи на доказательство по геометрии. Признаки параллельности прямых.Скачать
Определение равнобедренного треугольника
Какой треугольник называется равнобедренным?
Равнобедренным называется треугольник, у которого две стороны равны.
Давайте посмотрим на такой треугольник:
На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.
А вот как называются стороны равнобедренного треугольника:
AB и BC — боковые стороны,
AC — основание треугольника.
Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.
Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.
Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.
Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.
Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».
В данном треугольнике медианой является отрезок BH.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.
Высотой в представленном равнобедренном треугольнике является отрезок BH.
Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Признаки равнобедренного треугольника
Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.
Если у треугольника два угла равны, то этот треугольник — равнобедренный.
Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Свойства равнобедренного треугольника
Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, AH = HC и BH — медиана.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.
Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.
Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, AH = HC и BH — медиана.
Видео:7 класс, 25 урок, Признаки параллельности двух прямыхСкачать
Примеры решения задач
Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.
Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.
Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.
Значит, ∠A = ∠C = 80°.
Не должно вас удивить и то, что сумма углов треугольника равна 180°.
∠B = 180° − 80° − 80° = 20°.
Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.
Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.
А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.
Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.
Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.
Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Планиметрия. Страница 2
Главная
Репетиторы
Учебные материалы
Контакты
Главная > Учебные материалы > Математика: Планиметрия. Страница 2
1 2 3 4 5 6 7 8 9 10 11 12
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
1.Параллельность прямых
Теорема: если две прямые параллельны третьей прямой, то они параллельны.
Доказательство. Пусть даны две прямые а и b. Допустим, что они не параллельны между собой. (Рис.1) Тогда они пересекаются в некоторой точке С. Следовательно, через точку С проходят две прямые, параллельные прямой с. А это невозможно согласно аксиоме: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Следовательно, прямые а и b не пересекаются. Они параллельны.
Рис.1 Теорема. Параллельность прямых.
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
2.Признаки параллельности прямых
Теорема. Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180 градусов, то прямые параллельны.
Доказательство. Пусть даны две прямые a и b, которые образуют с секущей АВ внутренние накрест лежащие углы (Рис. 2 а). Допустим, что прямые a и b не параллельны. Тогда они пересекаются в одной точке С. Секущая АВ разбивает плоскость на две полуплоскости. И, следовательно, точка С лежит в одной из них и образует треугольник АВС. Сторона АС принадлежит прямой а. Сторона ВС принадлежит прямой b. (Рис. 2 б)
Отложим равный треугольник ABC1 в другой полуплоскости с вершиной С1 так, чтобы угол А треугольника АВС совпал с углом В треугольника АВС1. Так как по условию задачи сумма внутренних односторонних углов равна 180 градусов, то сторона АС1 ляжет на прямую а, ВС1 — на прямую b. Тогда точка С1 принадлежит двум прямым: а и b. Т.е. две точки С и С1 одновременно принадлежат двум прямым. А это невозможно. Следовательно прямые a и b не пересекаются, они параллельны.
3.Свойство углов при пересечении параллельных прямых
Теорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов.
Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3)
Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны.
Рис.3 Теорема. Свойство углов при пересечении параллельных прямых.
Теорема. Сумма углов треугольника равна 180 градусов.
Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4).
Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°.
Теорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую.
Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5)
Теперь проведем через точку А прямую, параллельную нашей перпендикулярной прямой. Она также будет перпендикулярна прямой а. Так как прямая а, перпендикулярна одной из параллельных прямых, перпендикулярна и второй прямой. Отрезок АВ и есть перпендикуляр. Если допустить, что существует другой перпендикуляр, допустим в точке С. То в треугольнике АВС образуются два угла 90 градусов, а это невозможно. Следовательно отрезок АВ — это единственный перпендикуляр, проходящий через точку А.
Рис.5 Теорема. Единственность перпендикуляра к прямой.
Видео:Задачи. Признак параллельности прямых. Доказать, что прямые параллельны. По рисунку.Скачать
6. Высота, биссектриса и медиана треугольника
Высотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону.
Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам.
Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6)
Теорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой.
Доказательство:
Пусть АВС — данный равнобедренный треугольник с основанием АС. Боковые стороны АВ и ВС равны, ВD — медиана. Необходимо доказать, что BD является биссектрисой и высотой.
Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°.
Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α.
Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой.
Даны прямая а и точка С, не лежащая на этой прямой. Необходимо доказать, что через точку С можно провести прямую, параллельную прямой а. (Рис.8)
Доказательство:
Проведем прямую b, параллельную прямой а. Тогда, согласно аксиоме 9, (через точку, не лежащую на данной прямой, можно провести только одну прямую) проведем прямую с через точку С, параллельную прямой b.
Таким образом, получается, что прямая с параллельна прямой b, и прямая a также параллельна прямой b по построению. Следовательно, по теореме о двух прямых, параллельных третьей прямой, имеем, что две прямые a и c параллельны прямой b и, следовательно, они (прямые а и с) параллельны. Т.е. через точку С можно провести прямую, параллельную прямой а.
Рис.8 Задача. Даны прямая а и точка С .
Пример 2
Даны две параллельные прямые а и b, и секущая с. Докажите, что биссектрисы внутренних накрест лежащих углов, образованных этими прямыми, параллельны (Рис.9)
Доказательство:
Так как прямые а и b параллельны, то углы α и β, образованные этими параллельными прямыми и секущей с, равны как внутренние накрест лежащие, т.е. ∠α = ∠β. Согласно определению, биссектриса — это луч, исходящий из вершины угла между его сторонами, который делит этот угол пополам. Следовательно, биссектрисы d1 и d2 делят углы α и β пополам.
Таким образом, так как углы α и β равны, то и углы α/2 и β/2 также равны. А если углы α/2 и β/2 равны, то они являются внутренними накрест лежащими углами, между секущей с и прямыми, на которых лежат лучи d1 и d2, и согласно теореме: признак параллельности прямых, лучи d1 и d2 лежат на параллельных прямых.
Рис.9 Задача. Даны две параллельные прямые а и b и секущая с.
Пример 3
Один из углов равнобедренного треугольника АВС равен 100° (Рис.10). Найти остальные углы треугольника.
Решение:
Так как сумма углов треугольника составляет 180°, а два угла у равнобедренного треугольника равны, то они не могут равняться 100°. Следовательно, углы при вершинах А и С равны, а угол при вершине В = 100°.
Сумма внешних углов треугольника АВС при вершиах А и В равна 240° (Рис.11). Найдите угол С треугольника АВС.
Решение:
Так как сумма углов α + β + α1 + β1 = 360°, а
α1 + β1 = 240° по условию задачи, то
А так как сумма углов треугольника составляет 180°, то
α + β + γ = 180°, т.е.
И следовательно, γ = 60°
Ответ: угол при вершине С = 60°.
Рис.11 Задача. Найти угол треугольника.
Пример 5
В равнобедренном треугольнике АВС с основанием АС проведена биссектриса AD. Угол при вершине В составляет 36° (Рис.12). Докажите, что треугольники CDA и ADB равнобедренные.
Доказательство:
Так как по условию задачи треугольник АВС равнобедренный, то углы при вершинах А и С равны:
α = 72°, а так как AD биссектриса, то ∠BAD = ∠DAC, т.е.
Следовательно, треугольник ADB равнобедренный. Углы при вершинах А и В равны 36°.
Теперь рассмотрим треугольник ADC. Угол λ равен:
λ = 180° — (α / 2 + α)
Таким образом, треугольник ADC равнобедренный. Углы при вершинах С и D равны 72°.
Рис.12 Задача. В равнобедренном треугольнике АВС .