Геометрия построение треугольников циркулем

Задачи на построение. 7-й класс, геометрия

Разделы: Математика

Класс: 7

Цели урока:

    максимально донести до учащихся изучаемый материал;
  • развивать мышление, память, умение свободно пользоваться циркулем;
  • попытаться повысить активность и самостоятельность учащихся при выполнении заданий.

Оборудование:

    школьный циркуль
  • транспортир,
  • линейка,
  • карточки для самостоятельной работы.

Тема урока: «Задачи на построение».

Сегодня мы будем учиться строить треугольники по трем заданным элементам с помощью циркуля и линейки.

Чтобы построить треугольник, нужно сначала уметь строить отрезок, равный заданному, и угол, равный заданному. Конечно, можно это сделать с помощью линейки с делениями и транспортира, но в математике требуется еще и уметь выполнять построения с помощью циркуля и линейки без делений.

Любая задача на построение включает в себя четыре основных этапа:

  • анализ;
  • построение;
  • доказательство;
  • исследование.

Анализ и исследование задачи необходимы так же, как и само построение. Необходимо посмотреть, в каких случаях задача имеет решение, а в каких – решения нет.

1. Построение отрезка, равного заданному.

2. Строим угол, равный заданному, с помощью циркуля и линейки.

А вот теперь перейдем к построению треугольников по трем элементам.

3. Построение треугольника по двум сторонам и углу между ними.

ДаноТребуется построитьПостроение
Геометрия построение треугольников циркулемГеометрия построение треугольников циркулемГеометрия построение треугольников циркулем
1. Построить угол А, равный заданному углу.
2. На одной стороне угла отметить точку С так, чтобы отрезок АС был равен заданному отрезку b.
3. На другой стороне угла отметить точку В так, чтобы отрезок АВ был равен заданному отрезку с.
4. Соединить с помощью линейки точки В и С.

Построен треугольник АСВ по двум сторонам и углу между ними.Геометрия построение треугольников циркулемГеометрия построение треугольников циркулем

Геометрия построение треугольников циркулем

Самостоятельная работа к схеме 3.

Построить треугольник ВСН, если ВС = 3 см, СН = 4 см, Геометрия построение треугольников циркулемС = 35є.

Построить треугольник СДЕ, у которого ДС = 4 см, ДЕ = 5 см, Геометрия построение треугольников циркулемД = 110є.

Подсказка. Перед построением треугольника необходимо сделать «от руки» чертеж треугольника, где показаны все заданные элементы.

4. Построение треугольника по стороне и прилежащим к ней углам.

Дано

Требуется построить

Построение

Геометрия построение треугольников циркулем

Геометрия построение треугольников циркулем

Геометрия построение треугольников циркулем1. Произвольно начертить отрезок АВ, равный заданному отрезку c.
2. Построить угол А, равный заданному.
3. Построить угол В, равный заданному.

Точка пересечения двух сторон углов А и В – вершина треугольника С.

Построили треугольник АСВ по стороне и двум заданным углам.Геометрия построение треугольников циркулемГеометрия построение треугольников циркулем

Самостоятельная работа к схеме 4.

Построить треугольник КМО, если КО = 6 см, К = 130є, О = 20є.

Построить треугольник ВСР, если С = 15є, Д = 50є, СД = 3 см.

5. Построение треугольника по трем сторонам.

Дано

Требуется построить

Построение

Геометрия построение треугольников циркулем

Геометрия построение треугольников циркулем

Геометрия построение треугольников циркулем

1. Построить отрезок АВ, равный заданному отрезку c.
2. Из точки А провести часть окружности, радиус которой
равен заданному отрезку b.
3. Из точки В провести часть окружности, радиус которой
равен заданному отрезку a, обе окружности пересекаются в точке С.

Построили треугольник АСВ по трем сторонам.Геометрия построение треугольников циркулемГеометрия построение треугольников циркулем

Геометрия построение треугольников циркулем

Самостоятельная работа к схеме 5.

Построить треугольник ОДЕ, если ОД = 4 см, ДЕ = 2 см, ЕО = 3 см.

Построить треугольник МНО, если МН = 1 см, НО = 4 см, ОМ = 3 см.

После построения любого треугольника, самостоятельно провести доказательство того, что получившийся треугольник – искомый, и по возможности провести исследование.

Видео:Строим треугольник по трем сторонам (Задача 5).Скачать

Строим треугольник по трем сторонам (Задача 5).

Построение с помощью циркуля и линейки — описание, алгоритмы и задачи

Построение с помощью циркуля и линейки – древнейший способ расчета в евклидовой геометрии. Известен со времен Древней Греции. Данная тема изучается в средних и старших классах на уроках геометрии.

Рассмотрим все случаи построения на конкретных примерах.

Видео:Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.Скачать

Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.

Построение отрезка, равного данному

Есть отрезок СD. Задача — начертить равнозначный данному отрезок той же величины.

Геометрия построение треугольников циркулем

Строится луч, имеющий начало в т. A. Циркуль отмеряет существующий отрезок CD. Циркулем откладывается отрезок, равнозначный первому отрезку, на том же начерченном луче от его начала (A).

Для подобного чертежа ножку с иглой закрепляют в начале луча A, а с помощью части с грифелем проводится дуга до места соприкосновения с лучом. Данную точку можно обозначить т. B.

Отрезок AB будет равнозначен отрезку СD. Задача решена.

Видео:Задачи на построение с помощью циркуля и линейки - 7 класс геометрияСкачать

Задачи на построение с помощью циркуля и линейки - 7 класс геометрия

Деление отрезка пополам

Имеется отрезок AB.

Сначала следует нарисовать окружность с радиусом больше половины отрезка AB с центром в т. A.

Геометрия построение треугольников циркулем

Далее чертится круг с тем же радиусом с серединой в т. B. В местах пересечения окружностей имеем т. C и т. D.

Сквозь эти точки требуется провести прямую линию. Получаем т. E, которая будет серединой отрезка AB.

Видео:Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

Построение угла, равного данному

Имеется угол ABC.

Вблизи угла проводится луч ED. Далее чертится окружность с серединой в т. B. В итоге имеем точки M и N.

Геометрия построение треугольников циркулем

Оставив раствор циркуля прежним, рисуют круг с серединой в т. E. В точке соприкосновения имеем т. K.

Поменяв раствор циркуля на длину расстояния между т. M и т. N, нужно провести окружность с серединой в т. K. В итоге получается т. F. После чертится прямая из т. E через т. F. Образуется угол DEF, который будет равнозначен углу ABC. Задача решена.

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Построение перпендикулярных прямых

Пример 1

Точка O находится на прямой a.

Есть прямая и точка, находящаяся на ней. Нанести линию, идущую через существующую точку и находящуюся под прямым углом к имеющейся прямой.

Шаг 1. Чертим круг с рандомным радиусом r с серединой в т. O. Окружность соприкасается с прямой в т. A и т. B.

Шаг 2. Из имеющихся точек строится круг с радиусом AB. Точки С и D являются точками соприкосновения окружностей.

Приложив линейку, чертят прямую, сквозь т. O и одну из т. C или т. D, к примеру отрезок OC.

Доказательство, что прямая OC лежит перпендикулярно a.

Намечаются два отрезка — AC и CB. Получившиеся треугольники будут равны, согласно третьему признаку равенства треугольников. Значит, прямая CO перпендикулярна AB.

Геометрия построение треугольников циркулем

Пример 2

Точка O находится вне прямой а.

Нарисовать окружность с радиусом r из т. O. Она должна проходить сквозь прямую a. A и B — точки её соприкосновения с прямой.

Оставив прежний радиус, рисуем окружности с серединой в т. A и т. B. Точка O1 — место их соприкосновения.

Рисуем линию, соединяющая т. O и т. O1.

Доказательство выглядит следующим образом.

Две прямые ОО1 и AB пересекаются в т. C. Согласно третьему признаку равенства всех треугольников AOB = BO1A. Из данного вывода следует, что угол OAC = O1AC. Одноименные треугольники также будут равны (согласно первому признаку равенства всех треугольников).

Исходя из этого, выводим, что угол OCA = O1CA, а, учитывая смежность углов, приходим к пониманию, что они прямые. А это означает, что OC – перпендикулярный отрезок, опущенный из т. O на прямую a. Задача решена.

Видео:Геометрия 7 класс (Урок№27 - Построение треугольника по трём элементам.)Скачать

Геометрия 7 класс (Урок№27 - Построение треугольника по трём элементам.)

Построение параллельных (непересекающихся) прямых

Имеется прямая и т. А, не лежащая на этой прямой.

Нужно отметить прямую, проходящую через т. A, и параллельную имеющейся прямой.

Берется рандомная точка на имеющейся прямой и именуется B. С помощью циркуля строится окружность радиуса AB с серединой в т. B. В месте пересечения окружности и данной прямой отмечается т. C.

Геометрия построение треугольников циркулем

Оставив прежний радиус, рисуется еще одна окружность, теперь уже с центром в т. C. При правильных расчетах дуга должна пройти через т. B.

C тем же радиусом AB строится окружность с серединой в т. A. Точку соприкосновения второй и третьей окружностей назовем D. Третья окружность, учитывая верность расчетов, также пройдет через т. B.

Проводится прямая через т. A и т. D, которая станет параллельной первой. В итоге, получились две параллельные прямые, BC и AD.

Видео:Геометрия 7. Урок 10 - Построение циркулем и линейкойСкачать

Геометрия 7. Урок 10 - Построение циркулем и линейкой

Построение правильного треугольника, вписанного в окружность

Правила построения правильного треугольника, вписанного в окружность:

Отметить отрезок AB, чья длина будет равняться а.

Взять циркуль. Часть с иголкой расположить на т. А, а часть с карандашом на т. B. Прочертить окружность. В итоге, радиус круга будет равнозначен длине отрезка AB.

Геометрия построение треугольников циркулем

Далее иглу размещают на т. B, а часть с грифелем на т. A. Чертится круг. В итоге, его радиус будет равнозначен длине отрезка AB.

На чертеже окружности пересеклись в двух точках. Далее нужно соединить т. A и т. B и одну из вышеупомянутых точек. В результате получится равносторонний треугольник.

Стороны такого треугольника равнозначны радиусам двух окружностей, которые равны длине а. Задача решена.

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Построение правильного четырехугольника вписанного в окружность

Вариант 1

Исходя из данности, что диагонали любого квадрата пересекаются в середине окружности и находятся по отношению к его осям под углом 45 градусов, производят следующие действия. Пользуясь линейкой и уголком с углами 45 градусов (см. рисунок), размечают вершины т. 1 и т. 3.

Сквозь данные точки чертят отрезки, стороны четырехугольника, расположенные по горизонтали. Это т. 4 и т. 1, т. 3 и т. 2. В конце линейкой и уголком по его катету проводятся линии, расположенные по вертикали (высоты), отрезок т.1 — т. 2 и отрезок т. 4 — т. 3.

Геометрия построение треугольников циркулем

Вариант 2

Так как вершины правильного четырехугольника разделяют наполовину дуги окружностей, между точками диаметра (см. рисунок), то для достижения результата делают следующее: отмечают на точках перпендикулярных диаметров т. A, т. B и т. C и рисуют дуги до их соприкосновения.

После чертят прямые через места соприкосновения дуг, которые выделены на фигуре линиями. Точки соприкосновения с окружностью будут являться вершинами — это т. 1 и т. 3, т. 4 и т. 2. Данные вершины полученного квадрата соединяют друг с другом.

Задача выполнена двумя способами.

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Построение вписанного в окружность правильного пятиугольника

Поместить на окружность т. 1, считая ее за вершину пятиугольника. Разделить отрезок AO пополам. Чтобы произвести подобную операцию, из т. A чертят дугу до места соприкосновения с окружностью в т. M и т. B.

Геометрия построение треугольников циркулем

Расположив конкретные точки на прямой, получаем т. K, и после совмещаем с т. 1. Радиусом, длина которого – отрезок А1, сделать изгиб из т. K до места соприкосновения с линией АО в т. H. После совместить т. 1 и т. H, образуя одну из пяти сторон пятиугольника.

Взять циркуль, величина раствора которого будет равна отрезку т.1 — т. H, нарисовать изгиб из т. 1 до соприкосновения с кругом. Так находят вершины 2 и 5. Отметив точки на вершинах 2 и 5, получают вершины 3 и 4. В конце все точки совмещают друг с другом.

Видео:Построение треугольника по трем сторонам. 7 класс . Геометрия.Скачать

Построение треугольника по трем сторонам. 7 класс . Геометрия.

Построение правильного шестиугольника, вписанного в окружность

Решение подобной задачи строится на свойствах, где сторона шестиугольника равнозначна радиусу круга.

Геометрия построение треугольников циркулем

Для расчета разделяют круг на шесть ровных частей и последовательно совмещают все полученные точки (см. рисунок). Задача решена.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Как начертить равносторонний треугольник

Геометрия построение треугольников циркулем

Из этого материала вы узнаете, как с помощью циркуля построить правильный треугольник. Напомним, что треугольник является правильным, если длина всех его сторон одинакова, а каждый из углов составляет 60°.

На листе бумаги отметьте произвольную точку. Установите в эту точку иглу циркуля и нарисуйте окружность.

Геометрия построение треугольников циркулем

Установите иглу циркуля в любую произвольную точку, лежащую на окружности, и нарисуйте вторую окружность с центром в этой точке.

При этом не меняйте раствор циркуля, то есть радиус первой окружности должен быть равен радиусу второй окружности.

Геометрия построение треугольников циркулем

Отметьте точки пересечения окружностей.

Геометрия построение треугольников циркулем

Соедините полученные точки линией. Полученный отрезок будет первой стороной треугольника.

Геометрия построение треугольников циркулем

Далее, через центры обеих окружностей нужно провести прямую линию.

Геометрия построение треугольников циркулемГеометрия построение треугольников циркулем

Таким образом, у вас получилось три точки, которые будут тремя вершинами треугольника.

Геометрия построение треугольников циркулем

Соедините все три точки между собой.

Геометрия построение треугольников циркулем

Полученный треугольник имеет одинаковую длину сторон, а величина каждого его угла составляет 60°, а значит он правильный.

🎬 Видео

Построение угла, равного данному. 7 класс.Скачать

Построение угла, равного данному. 7 класс.

Построение треугольника по углу и двум сторонам. 7 класс.Скачать

Построение треугольника по углу и двум сторонам. 7 класс.

Построение треугольника, равного данномуСкачать

Построение треугольника, равного данному

Построение треугольника по трем сторонам. 7 класс.Скачать

Построение треугольника по трем сторонам. 7 класс.

Построения с помощью циркуля и линейки. Равнобедренный и равносторонний треугольникиСкачать

Построения с помощью циркуля и линейки. Равнобедренный и равносторонний треугольники

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

Построение треугольника по трём сторонам с помощью циркуля и линейки. 5 классСкачать

Построение треугольника по трём сторонам с помощью циркуля и линейки. 5 класс

Построить биссектрису угла. Построение с помощью циркуля и линейки.Скачать

Построить биссектрису угла. Построение с помощью циркуля и линейки.

2. Построения с помощью циркуля и линейки.Скачать

2. Построения с помощью циркуля и линейки.
Поделиться или сохранить к себе: