Треугольник, вписанный в окружность. Теорема синусов
Серединный перпендикуляр к отрезку |
Окружность описанная около треугольника |
Свойства описанной около треугольника окружности. Теорема синусов |
Доказательства теорем о свойствах описанной около треугольника окружности |
- Серединный перпендикуляр к отрезку
- Окружность, описанная около треугольника
- Свойства описанной около треугольника окружности. Теорема синусов
- Доказательства теорем о свойствах описанной около треугольника окружности
- Треугольник. Формулы и свойства треугольников.
- Типы треугольников
- По величине углов
- По числу равных сторон
- Вершины углы и стороны треугольника
- Свойства углов и сторон треугольника
- Теорема синусов
- Теорема косинусов
- Теорема о проекциях
- Формулы для вычисления длин сторон треугольника
- Медианы треугольника
- Свойства медиан треугольника:
- Формулы медиан треугольника
- Биссектрисы треугольника
- Свойства биссектрис треугольника:
- Формулы биссектрис треугольника
- Высоты треугольника
- Свойства высот треугольника
- Формулы высот треугольника
- Окружность вписанная в треугольник
- Свойства окружности вписанной в треугольник
- Формулы радиуса окружности вписанной в треугольник
- Окружность описанная вокруг треугольника
- Свойства окружности описанной вокруг треугольника
- Формулы радиуса окружности описанной вокруг треугольника
- Связь между вписанной и описанной окружностями треугольника
- Средняя линия треугольника
- Свойства средней линии треугольника
- Периметр треугольника
- Формулы площади треугольника
- Формула Герона
- Равенство треугольников
- Признаки равенства треугольников
- Первый признак равенства треугольников — по двум сторонам и углу между ними
- Второй признак равенства треугольников — по стороне и двум прилежащим углам
- Третий признак равенства треугольников — по трем сторонам
- Подобие треугольников
- Признаки подобия треугольников
- Первый признак подобия треугольников
- Второй признак подобия треугольников
- Третий признак подобия треугольников
- Презентации двух уроков по геометрии на тему «Формулы для радиусов вписанных и описанных окружностей правильных многоугольников» (9 класс)
- Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
- Выберите документ из архива для просмотра:
- Описание презентации по отдельным слайдам:
- Описание презентации по отдельным слайдам:
- Краткое описание документа:
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Серединный перпендикуляр к отрезку
Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).
Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.
Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.
Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .
Докажем, что отрезок AE длиннее отрезка EB . Действительно,
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,
Полученное противоречие и завершает доказательство теоремы 2
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Окружность, описанная около треугольника
Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .
Видео:Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать
Свойства описанной около треугольника окружности. Теорема синусов
Фигура | Рисунок | Свойство | ||||||||||||
Серединные перпендикуляры к сторонам треугольника | Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство | |||||||||||||
Окружность, описанная около треугольника | Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство | |||||||||||||
Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | |||||||||||||
Центр описанной около прямоугольного треугольника окружности | Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство | |||||||||||||
Центр описанной около тупоугольного треугольника окружности | Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. | |||||||||||||
Теорема синусов | ||||||||||||||
Площадь треугольника | ||||||||||||||
Радиус описанной окружности |
Серединные перпендикуляры к сторонам треугольника |
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Для любого треугольника справедливы равенства (теорема синусов):
,
где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Доказательства теорем о свойствах описанной около треугольника окружности
Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.
Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)
.
Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:
l = 2Rsin φ . | (1) |
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 классСкачать
Треугольник. Формулы и свойства треугольников.
Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Типы треугольников
По величине углов
По числу равных сторон
Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать
Вершины углы и стороны треугольника
Свойства углов и сторон треугольника
Сумма углов треугольника равна 180°:
В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:
если α > β , тогда a > b
если α = β , тогда a = b
Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
a + b > c
b + c > a
c + a > b
Теорема синусов
Стороны треугольника пропорциональны синусам противолежащих углов.
a | = | b | = | c | = 2R |
sin α | sin β | sin γ |
Теорема косинусов
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 — 2 bc · cos α
b 2 = a 2 + c 2 — 2 ac · cos β
c 2 = a 2 + b 2 — 2 ab · cos γ
Теорема о проекциях
Для остроугольного треугольника:
a = b cos γ + c cos β
b = a cos γ + c cos α
c = a cos β + b cos α
Формулы для вычисления длин сторон треугольника
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Медианы треугольника
Свойства медиан треугольника:
В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
Медиана треугольника делит треугольник на две равновеликие части
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Формулы медиан треугольника
Формулы медиан треугольника через стороны
ma = 1 2 √ 2 b 2 +2 c 2 — a 2
mb = 1 2 √ 2 a 2 +2 c 2 — b 2
mc = 1 2 √ 2 a 2 +2 b 2 — c 2
Видео:Задание № 1088 — Геометрия 9 класс (Атанасян)Скачать
Биссектрисы треугольника
Свойства биссектрис треугольника:
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.
Формулы биссектрис треугольника
Формулы биссектрис треугольника через стороны:
la = 2√ bcp ( p — a ) b + c
lb = 2√ acp ( p — b ) a + c
lc = 2√ abp ( p — c ) a + b
где p = a + b + c 2 — полупериметр треугольника
Формулы биссектрис треугольника через две стороны и угол:
la = 2 bc cos α 2 b + c
lb = 2 ac cos β 2 a + c
lc = 2 ab cos γ 2 a + b
Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать
Высоты треугольника
Свойства высот треугольника
Формулы высот треугольника
ha = b sin γ = c sin β
hb = c sin α = a sin γ
hc = a sin β = b sin α
Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Окружность вписанная в треугольник
Свойства окружности вписанной в треугольник
Формулы радиуса окружности вписанной в треугольник
r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )
Видео:Геометрия 9 класс : Окружность. Описанная и вписаннаяСкачать
Окружность описанная вокруг треугольника
Свойства окружности описанной вокруг треугольника
Формулы радиуса окружности описанной вокруг треугольника
R = S 2 sin α sin β sin γ
R = a 2 sin α = b 2 sin β = c 2 sin γ
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Связь между вписанной и описанной окружностями треугольника
Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать
Средняя линия треугольника
Свойства средней линии треугольника
MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC
MN || AC KN || AB KM || BC
Видео:Геометрия 9 класс (Урок№26 - Построение правильных многоугольников.)Скачать
Периметр треугольника
Периметр треугольника ∆ ABC равен сумме длин его сторон
Видео:Вписанные и описанные окружности. С. р. 3 в1 9 классСкачать
Формулы площади треугольника
Формула Герона
S = | a · b · с |
4R |
Видео:9 класс. Геометрия. Правильные многоугольники и их свойства. Правильный треугольник. Урок #4Скачать
Равенство треугольников
Признаки равенства треугольников
Первый признак равенства треугольников — по двум сторонам и углу между ними
Второй признак равенства треугольников — по стороне и двум прилежащим углам
Третий признак равенства треугольников — по трем сторонам
Видео:Контрольная работа №2. Геометрия. 9 класс. 2 вариант.Скачать
Подобие треугольников
∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,
где k — коэффициент подобия
Признаки подобия треугольников
Первый признак подобия треугольников
Второй признак подобия треугольников
Третий признак подобия треугольников
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Описанная окружность | Геометрия 7-9 класс #75 | ИнфоурокСкачать
Презентации двух уроков по геометрии на тему «Формулы для радиусов вписанных и описанных окружностей правильных многоугольников» (9 класс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:С. р. #3. Вариант 2. 9 класс. Геометрия. Вписанные и описанные окружностиСкачать
Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
Сертификат и скидка на обучение каждому участнику
Выберите документ из архива для просмотра:
Выбранный для просмотра документ Г-9, урок № 31.pptx
Описание презентации по отдельным слайдам:
Г-9, урок № 31 Составила учитель математики Гринюк Любовь Викторовна МАОУ Ильинская СОШ г. Домодедово Московской области Формулы для радиусов вписанных и описанных окружностей правильных многоугольников
Проверка домашнего задания
Настройся на урок Какой многоугольник называется правильным? Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.
Настройся на урок По какой формуле вычисляется сумма углов правильного n-угольника?
Настройся на урок Как найти угол правильного n-угольника?
Классная работа Формулы для радиусов вписанных и описанных окружностей правильных многоугольников
Сегодня на уроке Выведем формулы, связывающие радиус описанной и радиус вписанной окружности со стороной а правильного п-угольника для п = 3, п = 4, п = 6 и научимся применять их к решению задач.
Изучение нового материала Вписанная и описанная окружность Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются этой окружности. Окружность называется описанной около многоугольника, если все его вершины лежат на этой окружности.
Изучение нового материала Вписанная и описанная окружность Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.
Свойства правильного многоугольника Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.
Формулы для вычисления Площадь правильного многоугольника Сторона правильного многоугольника Радиус вписанной окружности
Решите задачи № 1 Дано: R, n=3 Найти: а № 2 Дано: R, n=4 Найти: а № 3 Дано: R, n=6 Найти: а № 4 Дано: r, n=3 Найти: а № 5 Дано: r, n=4 Найти: а № 6 Дано: r, n=6 Найти: а К доске вызвать 6 учащихся для решения задач, с последующей проверкой.
Формулы для вычисления
Проверь свои знания 1. Найдите радиус окружности, вписанной в правильный треугольник, если сторона треугольника равна 5 см. Решение: 2. Радиус окружности, вписанной в квадрат, равен 1 см. Найдите радиус описанной окружности. Решение: 3. Радиус окружности, описанной около правильного шестиугольника, равен 7 см. Найдите сторону правильного шестиугольника. Решение:
Домашнее задание П.116, с. 172-173 № 21 № 24
Выбранный для просмотра документ Г-9, урок № 32.pptx
Описание презентации по отдельным слайдам:
Г-9, урок № 32 Составила учитель математики Гринюк Любовь Викторовна МАОУ Ильинская СОШ г. Домодедово Московской области Формулы для радиусов вписанных и описанных окружностей правильных многоугольников
Проверка домашнего задания
Настройся на урок Какой многоугольник называется правильным? Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.
Настройся на урок По какой формуле вычисляется радиус описанной окружности правильного треугольника? Выразите сторону треугольника
Настройся на урок По какой формуле вычисляется радиус вписанной окружности правильного треугольника? Выразите сторону треугольника
Настройся на урок По какой формуле вычисляется радиус описанной окружности правильного четырехугольника? Выразите сторону квадрата
Настройся на урок По какой формуле вычисляется радиус вписанной окружности правильного четырехугольника? Выразите сторону квадрата
Настройся на урок По какой формуле вычисляется радиус описанной окружности правильного шестиугольника? Выразите сторону шестиугольника
Настройся на урок По какой формуле вычисляется радиус вписанной окружности правильного шестиугольника? Выразите сторону шестиугольника
Классная работа Формулы для радиусов вписанных и описанных окружностей правильных многоугольников
Сегодня на уроке Отработка применения формул, связывающих радиус описанной и радиус вписанной окружностей со стороной а правильного п-угольника для п = 3, п = 4, п = 6 к решению задач.
Решите задачи 1. В окружность радиуса R = 12 вписан правильный п-угольник. Определите его сторону и периметр, если п = 3, п = 4, п = 6. 2. Около окружности радиуса r = 6 описан правильный п-угольник. Определите его сторону и периметр, если п = 3, п = 4, п = 6. 3. Для правильного п-угольника со стороной а = 6 см найдите радиус описанной около него окружности, если п = 3, п = 4, п = 6.
Решите задачу Дано: S=16, n=4 Найти: a, r, R, P Мы знаем формулы: № 4 Найдите неизвестные величины.
Решите задачу № 5 Дано: P=6, n=3 Найти: R, a, r, S Мы знаем формулы: Найдите неизвестные величины.
Решите задачу № 6 Дано: Найти: Решение:
Домашнее задание П.116, с. 172-173 № 20 № 23
Проверь свои знания 2) Внешний угол правильного n-угольника равен 50º. Найдите его внутренний угол. 1) По какой формуле вычисляется сумма углов правильного n-угольника?
Проверь свои знания 3) Как найти угол правильного n-угольника? 4) Внутренний угол правильного n-угольника равен 150º. Найдите его внешний угол. Самостоятельная работа
Выбранный для просмотра документ Самостоятельная.docx
№ 1. Сколько сторон имеет правильный п- угольник, если его внешний угол равен 20º?
№ 2. Правильный треугольник вписан в окружность радиуса 5 см. Определите радиус окружности, вписанной в этот треугольник.
№ 1. Сколько сторон имеет правильный п- угольник, если его внутренний угол равен 140º?
№ 2. Правильный шестиугольник вписан в окружность радиуса 4 см. Определите радиус окружности, вписанной в этот шестиугольник.
Краткое описание документа:
Данный материал состоит из двух уроков-презентаций по данной теме.
Урок первый – изучение нового материала, на котором вводятся формулы, связывающие радиусы вписанной и описанной окружностей для правильных п-угольников со стороной а при п = 3, п = 4, п = 6; формируются умения применять полученные знания при решении простейших задач.
Урок второй – закрепление полученных знаний, на котором вначале проверяется ранее изученный материал о правильных многоугольниках вписанных в окружность и описанных около окружности, проверяется знание формул из предыдущего урока на устных заданиях. Второй этап урока – это решение стандартных задач. Третий этап – проверка знаний по применению формул, связывающих радиусы вписанной и описанной окружностей для правильных п-угольников со стороной а при п = 3, п = 4, п = 6.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 964 человека из 79 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 677 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 311 человек из 70 регионов
Ищем педагогов в команду «Инфоурок»
Дистанционные курсы для педагогов
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 523 193 материала в базе
Другие материалы
- 11.12.2014
- 523
- 2
- 11.12.2014
- 1063
- 1
- 11.12.2014
- 2398
- 1
- 11.12.2014
- 755
- 0
- 11.12.2014
- 1063
- 1
- 11.12.2014
- 1599
- 1
- 11.12.2014
- 2486
- 3
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 11.12.2014 23649
- ZIP 1.4 мбайт
- 1232 скачивания
- Рейтинг: 4 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Гринюк Любовь Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 7 лет и 1 месяц
- Подписчики: 0
- Всего просмотров: 85341
- Всего материалов: 10
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Рособрнадзоре видят предпосылки к снижению качества знаний у школьников на фоне пандемии
Время чтения: 1 минута
В Ингушетии школьников переведут на дистанционное обучение с 3 по 5 февраля
Время чтения: 1 минута
Петербургских школьников с 7 по 11 классы перевели на дистанционное обучение
Время чтения: 1 минута
Школы Москвы будут самостоятельно принимать решение о длительности карантина
Время чтения: 1 минута
Полный перевод школ на дистанционное обучение не планируется
Время чтения: 1 минута
Ставропольских школьников с 1 по 8 класс перевели на дистанционное обучение
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.