тест по геометрии (8 класс) на тему
Подбор задач по теам: Касательная к окружности; центральные и вписанные углы, четыре замечательные точки треугольника. Задачи снабжены рисунками и подробным решением, некоторые задачи представлены в виде «Реши задачу по готовому чертежу». По данным темам также представлены самостоятельные работы в двух вариантах, указаны ответы к ним.
- Скачать:
- Предварительный просмотр:
- Задачи по теме «Окружность 8 класс. Подготовка к ОГЭ по математике»
- Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Геометрия. Урок 5. Окружность
- Определение окружности
- Отрезки в окружности
- Дуга в окружности
- Углы в окружности
- Длина окружности, длина дуги
- Площадь круга и его частей
- Теорема синусов
- Примеры решений заданий из ОГЭ
- 🔍 Видео
Видео:Геометрия 8 класс : Решение задач. Вписанная окружностьСкачать
Скачать:
Вложение | Размер |
---|---|
Подборка задач с решениями, самостоятельные работы по данной теме | 315 КБ |
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Предварительный просмотр:
Окружность. Задачи. Геометрия 8
1. Радиус окружности 5см. Найдите расстояние от центра окружности до прямой, содержащей хорду, равную 8см.
2. Найдите расстояние от точки А до ближайшей к ней точки окружности с центром О радиуса r, если : а) ОА = 12см, r = 8см; б) ОА = 6см, r = 8см.
АВ = ОА — r, АВ = r – ОА,
АВ = 12 – 8 = 4(см) АВ = 8 – 6 = 2(см)
3 . Докажите, что АВ ‹ АС, используя неравенство треугольника.
Имеем ОА‹ ОС + АС
ОВ + АВ ‹ ОС + АС, т.к. ОВ = ОС = r,
Изложить материал в виде небольшой лекции.
1 . , прямая А – секущая.
2. , прямая а имеет с окружностью
одну общую точку.
3 . , прямая а не имеет общих точек
Касательная к окружности. Геометрия 8
1 . Через концы диаметра АВ окружности проведены две касательные к ней. Третья касательная пересекает первые две в точках С и Д. Докажите, что квадрат радиуса этой окружности равен произведению отрезков СА и ВД.
Очевидно, что ∆ СОД — прямоугольный.
, но АС = СК, ВД = КД
(св-во 2-х касательных, проведенных из одной точки к окружности)
2 . Из точки, кратчайшее расстояние которой до окружности равно 25мм, проведена к окружности касательная. Отрезок этой касательной между данной точкой и точкой касания равен 35мм. Найти длину диаметра окружности.
∆ АОВ, В = 90º . По теореме Пифагора:
Ответ : Длина диаметра равна 24 мм.
3 . Из точки, наибольшее расстояние которой до окружности 50мм, проведена к окружности касательная. Отрезок этой касательной между точкой касания и данной точкой равен 40мм. Найти длину диаметра окружности.
∆ АОВ, В = 90º . По теореме Пифагора:
Ответ: Длина диаметра равна 18 мм.
Касательная к окружности. Геометрия 8
1. Дано: R = 5, АВ – касательная.
2 . Дано: АВ – касательная,
Найти: R окружности.
3. Дано: АВ, ВС – касательные,
4. Дано: АВ – касательная,
АО = ОВ, R = 6, АВ = 16
5. Дано: М, Н, К — точки касания
МВ = 4, АК = 5, НС = 8.
1. Прямая КЕ касается окружности с центром в точке О, К – точка касания. Найдите ОЕ, если КЕ = 8см, а радиус окружности равен 6см.
2. В треугольнике АВС АВ = 4см, ВС = 3см, АС = 5см. Докажите, что АВ – отрезок касательной, проведенной из точки А к окружности с центром в точке С и радиусом 3см.
1. Прямая NМ касается окружности с центром в точке О, М – точка касания, , а радиус окружности равен 5см. Найдите NО.
2 . В треугольнике NМК NМ = 6см, МК = 8см, NК = 10см. Докажите, что МК – отрезок касательной, проведенной из точки К к окружности с центром в точке N и радиусом 6см.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Задачи по теме «Окружность 8 класс. Подготовка к ОГЭ по математике»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:ГЕОМЕТРИЯ 8 класс: Решение задач. Описанная окружностьСкачать
Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
Сертификат и скидка на обучение каждому участнику
Окружность 8 класс
Точка O – центр окружности, на которой лежат точки P, Q и R таким образом, что OPQR – ромб. Найдите угол ORQ. Ответ дайте в градусах.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен 60°. Найдите длину хорды АВ, если радиус окружности равен 8.
Точка О — центр окружности, ∠ BOC=160° (см. рисунок). Найдите величину угла BAC (в градусах).
Точка О – центр окружности, ∠ AOB=130° (см. рисунок). Найдите величину угла ACB(в градусах).
Точка О — центр окружности, ∠ BAC=40° (см. рисунок). Найдите величину угла BOC (в градусах).
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠ NBA=38 ∘ . Найдите угол NMB. Ответ дайте в градусах.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠ NBA=73 ∘ . Найдите угол NMB. Ответ дайте в градусах.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ ABC=15 ∘ и ∠ OAB=8 ∘ . Найдите угол BCO. Ответ дайте в градусах.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ ABC=56 ∘ и ∠ OAB=15 ∘ . Найдите угол BCO. Ответ дайте в градусах.
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 84 ∘ . Найдите величину угла OMK. Ответ дайте в градусах.
Сторона AC треугольника ABC проходит через центр описанной около него окружности. Найдите ∠ C, если ∠ A=75 ∘ . Ответ дайте в градусах.
Точка О – центр окружности, ∠ AOB=84° (см. рисунок). Найдите величину угла ACB(в градусах).
Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен 130 ∘ . Найдите вписанный угол ACB. Ответ дайте в градусах.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ ABC=25 ∘ . Найдите величину угла BOC. Ответ дайте в градусах.
На окружности с центром O отмечены точки A и B так, что ∠ AOB=66 ∘ . Длина меньшей дуги AB равна 99. Найдите длину большей дуги.
На окружности с центром O отмечены точки A и B так, что ∠ AOB=140 ∘ . Длина меньшей дуги AB равна 98. Найдите длину большей дуги.
Точка О — центр окружности, ∠ BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).
Точка О — центр окружности, ∠ BAC=10° (см. рисунок). Найдите величину угла BOC (в градусах).
Четырехугольник ABCD вписан в окружность. Угол ABC равен 70 ∘ , угол CAD равен 49 ∘ . Найдите угол ABD. Ответ дайте в градусах.
Центральный угол AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 7.
Отрезок AB=40 касается окружности радиуса 75 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Отрезок AB=48 касается окружности радиуса 14 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB =12 , AO =13 .
AC и BD – диаметры окружности с центром O. Угол ACB равен 79 ∘ . Найдите угол AOD. Ответ дайте в градусах.
Касательные в точках A и B к окружности с центром O пересекаются под углом 72 ∘ . Найдите угол ABO. Ответ дайте в градусах.
В угол C величиной 83 ∘ вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.
В угол C величиной 40 ∘ вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 130°.
Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.
На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
134. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ ABC=177 ∘ . Найдите величину угла BOC. Ответ дайте в градусах.
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
Около трапеции, один из углов которой равен 48°, описана окружность. Найдите остальные углы трапеции.
Сторона AC треугольника ABC проходит через центр описанной около него окружности. Найдите ∠ C, если ∠ A=9 ∘ . Ответ дайте в градусах.
В окружности с центром O, AC и BD – диаметры. Центральный угол AOD равен 136 ∘ . Найдите вписанный угол ACB. Ответ дайте в градусах.
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 10.
Отрезки AB и CD являются хордами окружности. Найдите длину хорды CD, если AB=20, а расстояния от центра окружности до хорд AB и CD равны соответственно 24 и 10.
Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=30, CD=40, а расстояние от центра окружности до хорды AB равно 20.
В трапецию, сумма длин боковых сторон которой равна 22, вписана окружность. Найдите длину средней линии трапеции.
В трапецию, сумма длин боковых сторон которой равна 14, вписана окружность. Найдите длину средней линии трапеции.
Найдите угол ABC. Ответ дайте в градусах.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 945 человек из 79 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 678 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 305 человек из 68 регионов
Ищем педагогов в команду «Инфоурок»
Видео:КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать
Дистанционные курсы для педагогов
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 510 547 материалов в базе
Другие материалы
- 25.10.2015
- 526
- 0
- 25.10.2015
- 946
- 0
- 25.10.2015
- 8095
- 36
- 25.10.2015
- 1862
- 39
- 25.10.2015
- 1974
- 0
- 25.10.2015
- 921
- 1
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 25.10.2015 21882
- DOCX 111.5 кбайт
- 320 скачиваний
- Рейтинг: 3 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Седельникова Галина Дмитриевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 6 лет и 3 месяца
- Подписчики: 0
- Всего просмотров: 42176
- Всего материалов: 11
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Каждый второй российский студент недоволен своим вузом
Время чтения: 1 минута
В Пензенской области детям запретили посещать театры, музеи и секции
Время чтения: 1 минута
В Тюменской области школы и колледжи перевели на дистанционное обучение
Время чтения: 1 минута
В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей
Время чтения: 1 минута
В Петербурге открыли памятник работавшим во время блокады учителям
Время чтения: 1 минута
Все школы Оренбурга переводят на дистанционное обучение с 28 января
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать
Геометрия. Урок 5. Окружность
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение окружности
- Отрезки в окружности
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности .
Видео:Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Видео:ВСЯ ГЕОМЕТРИЯ 8 КЛАСС ЗА 15 МИНУТ / АТАНАСЯН / К ОГЭСкачать
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности .
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Видео:Математика| Геометрия 8 класса в одной задачеСкачать
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
Длина дуги окружности , на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Видео:Геометрия 8 класс. Тема: "Вписанная и описанная окружности. Решение задач"Скачать
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Видео:ОКРУЖНОСТЬ радиус окружности ЗАДАЧИ 8 класс АтанасянСкачать
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Видео:Геометрия 8 класс: Решение задач на касательную к окружностиСкачать
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
🔍 Видео
Вписанная и описанная окружности. ЗадачиСкачать
Геометрия 8 класс : Решение задач на центральные и вписанные углыСкачать
ГЕОМЕТРИЯ, 8 КЛАСС, тема Решение задач по теме "Описанная окружность"Скачать
Вписанная и описанная окружность - от bezbotvyСкачать
Геометрия 8 класс за 1 час | Математика | УмскулСкачать