- Онлайн калькулятор
- Как посчитать длину хорды (градусы)
- Как посчитать длину хорды (радианы)
- Теория
- Формула
- Пример
- Деление круга на равные части
- Деление круга на равные по площади части радиусами
- Деление круга на равные по площади части параллельными хордами
- Деление круга на равные части радиусами
- Деление круга на равные части параллельными хордами
- Деление окружности при помощи коэффициента
- 🎦 Видео
Видео:Деление окружности на 3; 6; 12 равных частейСкачать
Онлайн калькулятор
Хорда круга – отрезок соединяющий две точки, лежащие на окружности.
Чтобы посчитать длину хорды вам необходимо знать, чему равен радиус (r) окружности и угол (α) между двумя радиусами, образующими вместе с хордой равнобедренный треугольник (см. рис.)
Как посчитать длину хорды (градусы)
Чему равна длина хорды окружности если её радиус ,
а
Как посчитать длину хорды (радианы)
Чему равна длина хорды окружности если её радиус ,
а
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Теория
Чему равна длина хорды (l) окружности если известны её радиус (r) и центральный угол (α), опирающийся на данную хорду?
Формула
Пример
Если радиус круга равен 4 см, а ∠α = 90°, то длина хорды примерно равна 5.65 см.
Видео:Деление окружности на равные части. Внимание!!! В таблице имеются ошибки. ПОЛЬЗУЙТЕСЬ ФОРМУЛОЙ!!!Скачать
Деление круга на равные части
Статья содержит два калькулятора, рассчитывающие параметры деления круга на равные по площади части радиусами и параллельными хордами
Ниже представлены два калькулятора, рассчитывающие параметры разделения круга на равные части. Сначала — традиционный калькулятор, который делит круг на равные части радиусами (примерно так, как режут пиццу или торт), под ним — нетрадиционный калькулятор, который делит круг на равные по площади части параллельными хордами. Оба калькулятора визуализируют результат рисунком. Методы расчета с формулами для обоих калькуляторов приведены ниже, под калькуляторами.
Деление круга на равные по площади части радиусами
Деление круга на равные по площади части параллельными хордами
Деление круга на равные части радиусами
Традиционный и очень простой метод деления круга — по факту, нарезка равных секторов. Метод и формулы очень просты:
- Определяем угловой размер каждого сектора в радианах, путем деления 360 градусов на нужное число секторов.
- Определяем размер дуги сектора, перемножая радиус на угол в радианах
- Определяем размер хорды по теореме косинусов (хорда является основанием равнобедренного треугольника с боковыми сторонами R и противолежащим углом альфа.
Собственно и всё — мы получили все характеристики для N равных секторов
Деление круга на равные части параллельными хордами
Этот способ более любопытен, чем предыдущий. Для простоты будем рассматривать верхнюю половину круга, так как с нижней все будет симметрично.
Задача состоит в определении x-вой координаты точек, через которые нужно проводить хорды (на рисунке это точки x1 и x2). Выведем для начала формулу площади куска, отсекаемого хордой слева.
Верхнюю полуокружность можно представить графиком функции y=f(x), где x — это координата вдоль оси абсцисс, а y — это функция, численно равная y координате соответствующей точки верхней полуокружности.
По теореме Пифагора получаем следующую функцию
Чтобы получить площадь фигуры, отсекаемой хордой слева, надо проинтегрировать эту функцию от -R до x. Первообразная функции равна:
Осталось определиться с константой. Нам надо, чтобы в точке с координатами -R площадь была равна нулю. Подставив -R вместо x в формулу выше, получаем
Итак, полное выражение
Теперь рассмотрим нахождение координат крайней левой точки. Нам известна площадь, которую она должна отсечь (напоминаю, речь идет о полуокружности)
Таким образом мы можем приравнять
Что дает нам такое финальное уравнение
Данное уравнение является трансцендентным, а поэтому находить координату первой точки придется численным методом, например, методом бисекции или методом Ньютона. Калькулятор использует метод Ньютона.
Вторая и последующие точки находится аналогично, путем изменения размера отсекаемой площади. Для второй точки это будет , для третьей и так далее.
Зная координаты точек, несложно рассчитать все остальные параметры, в частности, длину хорды.
Видео:Длина окружности. Математика 6 класс.Скачать
Деление окружности при помощи коэффициента
Для деления окружности на любое число равных частей часто пользуются приведённой в статье таблицей коэффициентов для длин хорд заданной окружности.
Деление окружности на произвольное число равных частей можно производить с помощью таблицы хорд
Для деления окружности на любое число равных частей пользуются коэффициентами, приведёнными в таблице. Длину L хорды, которую откладывают на заданной окружности.
Для получения длины хорды, нужно умножить диаметр окружности на коэффициент из таблицы.
Таблица позволяет делить окружность до 30 частей. Если требуется большее количество, то коэффициент несложно посчитать самостоятельно. Для этого делим 360 на нужное количество частей и берём синус этого числа (на большинстве калькуляторов есть такая функция). Полученный результат делим на два — это и есть наш коэффициент.
🎦 Видео
Деление окружностиСкачать
Длина окружности. Площадь круга - математика 6 классСкачать
Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Радиус и диаметрСкачать
Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать
Деление окружности на 12 равных частейСкачать
Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Деление окружности на n- равные частиСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Окружность. Длина хорды. Теорема синусов.Скачать
Деление окружности на 3 частиСкачать
КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать
Как измерить радиус детали по длине хорды и высоте сегментаСкачать
Длина окружности. Площадь круга. 6 класс.Скачать
Деление окружности на равные части с помощью циркуляСкачать
Деление окружностей на равные частиСкачать