Формула описанной окружности неправильного треугольника

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Формула описанной окружности неправильного треугольника

Формула описанной окружности неправильного треугольника

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Формула описанной окружности неправильного треугольника

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Формула описанной окружности неправильного треугольника

Формула описанной окружности неправильного треугольника

где a – сторона треугольника.

Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Формула описанной окружности неправильного треугольника

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Формула описанной окружности неправильного треугольника

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Формула описанной окружности неправильного треугольника

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Радиус описанной окружности

Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

Формула описанной окружности неправильного треугольника

Формула описанной окружности неправильного треугольника

Формула описанной окружности неправильного треугольника

где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

Формула описанной окружности неправильного треугольника

у остроугольного треугольника — внутри треугольника;

у прямоугольного — на середине гипотенузы;

у тупоугольного — вне треугольника, напротив тупого угла.

Радиус описанной окружности для прямоугольного треугольника

Формула описанной окружности неправильного треугольника

Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

Формула описанной окружности неправильного треугольника

Окружность, описанная около многоугольника

Формула описанной окружности неправильного треугольника

Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Радиус описанной около многоугольника окружности находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

Радиус окружности, описанной около правильного многоугольника

Формула радиуса описанной окружности для правильного многоугольника

Формула описанной окружности неправильного треугольника

где a — длина стороны многоугольника, n — количество его сторон.

Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

Радиус описанной окружности правильного треугольника

Формула описанной окружности неправильного треугольникаФормула радиуса описанной окружности для правильного треугольника

Формула описанной окружности неправильного треугольника

Если без иррациональности в знаменателе —

Формула описанной окружности неправильного треугольника

У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

Формула описанной окружности неправильного треугольника

Радиус описанной окружности квадрата

Формула описанной окружности неправильного треугольника

Формула радиуса описанной окружности для квадрата

Формула описанной окружности неправильного треугольника

Если без иррациональности в знаменателе —

Формула описанной окружности неправильного треугольника

Радиус описанной окружности правильного шестиугольника

Формула описанной окружности неправильного треугольника

Формула радиуса описанной окружности для правильного шестиугольника

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Теорема синусов

Формула описанной окружности неправильного треугольника

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Формула радиуса описанной окружности треугольника. Геометрия 9 классСкачать

Формула радиуса описанной окружности треугольника. Геометрия 9 класс

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Формула описанной окружности неправильного треугольника

Формула теоремы синусов:

Формула описанной окружности неправильного треугольника

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Формула описанной окружности неправильного треугольника

Из этой формулы мы получаем два соотношения:


    Формула описанной окружности неправильного треугольника

Формула описанной окружности неправильного треугольника
На b сокращаем, синусы переносим в знаменатели:
Формула описанной окружности неправильного треугольника

  • Формула описанной окружности неправильного треугольника
    bc sinα = ca sinβ
    Формула описанной окружности неправильного треугольника
  • Из этих двух соотношений получаем:

    Формула описанной окружности неправильного треугольника

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Формула описанной окружности неправильного треугольника

    Формула описанной окружности неправильного треугольника

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Формула описанной окружности неправильного треугольника

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Формула описанной окружности неправильного треугольника

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Формула описанной окружности неправильного треугольника

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Формула описанной окружности неправильного треугольника

    Вспомним свойство вписанного в окружность четырёхугольника:

    Формула описанной окружности неправильного треугольника

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Формула описанной окружности неправильного треугольника

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Формула описанной окружности неправильного треугольника

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Формула описанной окружности неправильного треугольника

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Формула описанной окружности неправильного треугольника

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Формула описанной окружности неправильного треугольника

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Формула описанной окружности неправильного треугольника

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Формула описанной окружности неправильного треугольника

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Формула описанной окружности неправильного треугольника

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Формула описанной окружности неправильного треугольника

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Формула описанной окружности неправильного треугольника
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Формула описанной окружности неправильного треугольника

    Формула описанной окружности неправильного треугольника

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

    №706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Формула описанной окружности неправильного треугольника

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    📸 Видео

    Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.Скачать

    Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.

    Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

    Вписанная и описанная окружности | Лайфхак для запоминания

    Радиус описанной окружностиСкачать

    Радиус описанной окружности

    Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    За 5 секунд находим радиус описанной окружности #геометрия #образование #обучение #репетиторСкачать

    За 5 секунд находим радиус описанной окружности #геометрия #образование #обучение #репетитор

    Треугольник и окружность #shortsСкачать

    Треугольник и окружность #shorts

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Задание 24 ОГЭ по математике #7Скачать

    Задание 24 ОГЭ по математике #7

    Площадь треугольника через радиус описанной окружности: ОГЭ - ЕГЭСкачать

    Площадь треугольника через радиус описанной окружности: ОГЭ - ЕГЭ

    ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

    ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

    Три способа нахождения радиуса описанной окружности вокруг треугольникаСкачать

    Три способа нахождения радиуса описанной окружности вокруг треугольника
    Поделиться или сохранить к себе: