Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.
В формулировке окружности упоминается расстояние между точкой окружности и центром.
Формула расстояния между двумя точками М1(х1; у1) и М2(х2; у2) имеет вид:
,
Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.
Отметим произвольную точку М(х; у) на этой окружности.
.
Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.
Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .
Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:
В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):
- Уравнение окружности по трем точкам
- Уравнение окружности
- Пример
- Решение :
- Шаг :2
- Шаг :3
- Шаг :4
- Шаг :5
- Уравнение окружности, проходящей через три заданные точки
- Уравнение окружности, проходящей через три заданные точки
- Первая точка
- Вторая точка
- Третья точка
- Центр
- Как найти окружность, проходящюю через три заданные точки
- 💥 Видео
Видео:Построение окружности по трём точкам.Скачать
Уравнение окружности по трем точкам
Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.
Уравнение окружности
r 2 = (x — h) 2 + (y — k) 2
- h,k — координаты центра Окружности
- x,y — координаты точки окружности
- r — радиус
Пример
Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)
Решение :
Подставляем координаты точек в формулу
- (2 — h) 2 + (2 — k) 2 = r 2
- (2 — h) 2 + (4 — k) 2 = r 2
- (5 — h) 2 + (5 — k) 2 = r 2
Шаг :2
Найдем значение k упрощая 1 и 2 уравнения
- (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
- 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
- 8 — 4k = 20 — 8k
- k= 3
Шаг :3
Найдем значение h упрощая уравнения 2 и 3
- (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
- 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
- 8 — 4k — 4h = 50 — 10h — 10k
- 6k + 6h = 42
Подставив значение k=3 в уравнение
Получаем координаты точки центра (h,k) = ( 4,3 )
Шаг :4
Подставим значения h,k в формулу
- r 2 = (x — h) 2 + (y — k) 2
- r 2 = (2 — 4) 2 + (2 — 3) 2
- r 2 = (-2) 2 + (-1) 2
- r 2 = 5
- r = 2.24
Шаг :5
Подставим значения h, k в уравнение окружности
(x — h) 2 + (y — k) 2
Уравнение окружности = (x — 4) 2 + (y — 3) 2
Видео:Уравнение окружности и формула расстояния между точками на плоскостиСкачать
Уравнение окружности, проходящей через три заданные точки
Этот онлайн калькулятор выводит уравнение окружности, проходящей через три заданные точки
Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.
Уравнение окружности, проходящей через три заданные точки
Первая точка
Вторая точка
Третья точка
Центр
Видео:Математика. Центр окружности по трем точкамСкачать
Как найти окружность, проходящюю через три заданные точки
Давайте вспомним как выглядит уравнение окружности в стандартной форме:
Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений
Значения , и мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.
Теперь у нас есть три линейных уравнения для трех неизвестных — составим систему уравнений соответствующую матричной форме:
Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь — Решение системы линейных алгебраических уравнений методом Гаусса ). «Нет решений» — означает, что точки коллинеарны и окружность через них провести нельзя.
Координаты центра окружность и ее радиус относится к подобному решению
Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор — Уравнение окружности по заданному центру и радиусу в различных формах
💥 Видео
9 класс, 6 урок, Уравнение окружностиСкачать
10 класс, 11 урок, Числовая окружностьСкачать
Построение окружности по трем точкамСкачать
начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать
Уравнение окружности (1)Скачать
ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать
Как искать точки на тригонометрической окружности.Скачать
Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать
Coordinates on Circle - Координаты точек окружностиСкачать
"Парадоксальное" среднее расстояние между точками на окружностиСкачать
9 класс, 7 урок, Уравнение прямойСкачать
Длина окружности. Математика 6 класс.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать
Составляем уравнение прямой по точкамСкачать
Уравнение окружностиСкачать
Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать