Удобно, когда все формулы, по которым можно найти радиус вписанной в треугольник и в многоугольник окружности, размещены на одной странице.
Радиус вписанной в многоугольник окружности
Если в многоугольник можно вписать окружность, то формула для вычисления радиуса вписанной окружности:
где p — полупериметр, то есть полусумма длин всех сторон этого многоугольника.
Например, для пятиугольника со сторонами a, b, c, d, e радиус вписанной окружности находится по формуле
Радиус вписанной в треугольник окружности
Формула для нахождения радиуса вписанной в треугольник окружности (верна для треугольника любого вида)
где p — полупериметр,
где a, b, c — стороны треугольника.
Радиус вписанной в прямоугольный треугольник окружности
Формула для нахождения радиуса окружности, вписанной в прямоугольный треугольник
где a и b — катеты, c — гипотенуза.
Радиус окружности, вписанной в правильный многоугольник
Формула радиуса вписанной в правильный многоугольник окружности
где a — сторона многоугольника, n — количество сторон.
Частные случаи — правильный (равносторонний) треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник.
Радиус окружности, вписанной в правильный треугольник
Формула радиуса вписанной окружности для правильного треугольника:
В правильном треугольнике радиус вписанной окружности вдвое меньше радиуса описанной окружности:
Радиус окружности, вписанной в квадрат
Формула радиуса вписанной в квадрат окружности:
где a — сторона квадрата.
Радиус окружности, вписанной в правильный шестиугольник
Формула радиуса вписанной в правильный шестиугольник окружности:
где a — сторона правильного шестиугольника.
Для любого многоугольника центр вписанной окружности лежит в точке пересечения его биссектрис.
- 5 Comments
- Все формулы для радиуса вписанной окружности
- Радиус вписанной окружности в треугольник
- Радиус вписанной окружности в равносторонний треугольник
- Радиус вписанной окружности равнобедренный треугольник
- Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
- Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
- Формулы для радиуса окружности, вписанной в треугольник
- Вывод формул для радиуса окружности, вписанной в треугольник
- 📺 Видео
Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать
5 Comments
Почему для квадрата не подходит формула S=pr
Вполне подходит. Полупериметр p=2а, r=a/2, откуда S=2a∙(a/2)=a².
Огромное спасибо этому сайту!Всё просто, понятно и правильно.
Радиус вписанной окружности это есть высота правильного многоугольника? Работает ли это для всех многоугольников?
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Все формулы для радиуса вписанной окружности
Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Радиус вписанной окружности в треугольник
a , b , c — стороны треугольника
p — полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Видео:Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружностиСкачать
Радиус вписанной окружности в равносторонний треугольник
a — сторона треугольника
r — радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Видео:Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать
Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
α — угол при основании
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
h — высота
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла |
Формулы для радиуса окружности, вписанной в треугольник |
Вывод формул для радиуса окружности, вписанной в треугольник |
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.
Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).
Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).
Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.
Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.
Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).
Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно
что и требовалось доказать.
Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.
Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.
Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.
Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).
Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать
Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .
Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.
Видео:112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписаннойСкачать
Формулы для радиуса окружности, вписанной в треугольник
Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.
Фигура | Рисунок | Формула | Обозначения | |||||||||||||||||||
Произвольный треугольник | ||||||||||||||||||||||
Равнобедренный треугольник | ||||||||||||||||||||||
Равносторонний треугольник | ||||||||||||||||||||||
Прямоугольный треугольник |
Произвольный треугольник | ||
Равнобедренный треугольник | ||
Равносторонний треугольник | ||
Прямоугольный треугольник | ||
Произвольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Видео:Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать
Вывод формул для радиуса окружности, вписанной в треугольник
Теорема 5 . Для произвольного треугольника справедливо равенство
где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).
с помощью формулы Герона получаем:
что и требовалось.
Теорема 6 . Для равнобедренного треугольника справедливо равенство
где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).
то, в случае равнобедренного треугольника, когда
что и требовалось.
Теорема 7 . Для равностороннего треугольника справедливо равенство
где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).
то, в случае равностороннего треугольника, когда
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.
Теорема 8 . Для прямоугольного треугольника справедливо равенство
Доказательство . Рассмотрим рисунок 9.
Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,
В силу теоремы 3 справедливы равенства
Следовательно, принимая также во внимание теорему Пифагора, получаем
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.
📺 Видео
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Радиус вписанной окружности, формулу через площадь и полупериметрСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Геометрия. 9 класс. Формулы для нахождения радиусов вписанной и описанной окружностей треугольникаСкачать
Формула радиуса вписанной окружности треугольника. Геометрия 9 классСкачать
Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружностиСкачать
найти радиус окружности, описанной вокруг треугольникаСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Геометрия 9 класс (Урок№22 - Формулы площади правильного многоугольника,стороны и радиуса впис.окр.)Скачать
Математика за минуту: Наглядное объяснение формулы радиуса вписанной окружности. Без звука.Скачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать