Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.
Окружность, точно можно вписать в такие геометрические фигуры, как:
- Треугольник
- Выпуклый, правильный многоугольник
- Квадрат
- Равнобедренная трапеция
- Ромб
В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.
Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.
Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.
Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.
Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.
Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.
- Свойства вписанной окружности
- В треугольник
- В четырехугольник
- Примеры вписанной окружности
- Верные и неверные утверждения
- Окружность вписанная в угол
- Окружность: вписанная в многоугольник или угол
- Вписанная и описанная окружности
- Вписанная окружность
- Теорема 1 (об окружности, вписанной в треугольник)
- Готовые работы на аналогичную тему
- Описанная окружность
- Теорема 2 (об окружности, описанной около треугольника)
- Пример задачи на понятия вписанной и описанной окружности
- 📹 Видео
Свойства вписанной окружности
В треугольник
- В любой треугольник может быть вписана окружность, причем только один раз.
- Центр вписанной окружности — точка пересечения биссектрис треугольника.
- Вписанная окружность касается всех сторон треугольника.
- Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c) cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
окружность и любая из сторон треугольника.
перпендикуляры к любой точке касания.
треугольника на 3 пары равных отрезков.
Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:
с — расстояние между центрами вписанной и описанной окружностей треугольника.
R — радиус описанной около треугольника.
r — радиус вписанной окружности треугольника.
В четырехугольник
- Не во всякий четырехугольник можно вписать окружность.
- Если у четырехугольника суммы длин его противолежащих
сторон равны, то окружность, может быть, вписана (Теорема Пито). - Центр вписанной окружности и середины двух
диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона). - Точка пересечения биссектрис — это центр вписанной окружности.
- Точка касания — это точка, в которой соприкасается
окружность и любая из сторон четырехугольника. - Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c+d)cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
равноудалены от этой конца и начала этой стороны, то есть от его вершин.
Примеры вписанной окружности
- Треугольник
- Четырехугольник
- Многоугольник
Примеры описанного четырехугольника:
равнобедренная трапеция, ромб, квадрат.
Примеры описанного треугольника:
равносторонний, равнобедренный,
прямоугольный треугольники.
Верные и неверные утверждения
- Радиус вписанной окружности в треугольник и радиус вписанной
в четырехугольник вычисляется по одной и той же формуле. Верное утверждение. - Любой параллелограмм можно вписать в окружность. Неверное утверждение.
- В любой четырехугольник можно вписать окружность. Неверное утверждение.
- В любой ромб можно вписать окружность. Верное утверждение.
- Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
- Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
- Угол вписанный в окружность равен соответствующему центральному
углу опирающемуся на ту же дугу. Неверное утверждение. - Радиус вписанной окружности в прямоугольный треугольник равен
половине разности суммы катетов и гипотенузы. Верное утверждение. - Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
- Вписанная окружность в треугольник имеет в общем
три общие точки со всеми сторонами треугольника. Верное утверждение.
Окружность вписанная в угол
Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.
Центр окружности, которая вписана в угол,
расположен на биссектрисе этого угла.
К центру окружности вписанной в угол, можно провести,
в общей сложности два перпендикуляра со смежных сторон.
Длина диаметра, радиуса, хорды, дуги вписанной окружности
измеряется в км, м, см, мм и других единицах измерения.
Видео:Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |Скачать
Окружность: вписанная в многоугольник или угол
Определения
Окружность (S) вписана в угол (alpha) , если (S) касается сторон угла (alpha) .
Окружность (S) вписана в многоугольник (P) , если (S) касается всех сторон (P) .
В этом случае многоугольник (P) называется описанным около окружности.
Теорема
Центр вписанной в угол окружности лежит на его биссектрисе.
Доказательство
Пусть (O) – центр некоторой окружности, вписанной в угол (BAC) . Пусть (B’) – точка касания окружности и (AB) , а (C’) – точка касания окружности и (AC) , тогда (OB’) и (OC’) – радиусы, проведённые в точки касания, следовательно, (OC’perp AC) , (OB’perp AB) , (OC’ = OB’) .
Значит, треугольники (AC’O) и (AB’O) – прямоугольные треугольники, у которых равны катеты и общая гипотенуза, следовательно, они равны, откуда (angle CAO = angle BAO) , что и требовалось доказать.
Теорема
В любой треугольник можно вписать единственную окружность, причём центр этой вписанной окружности есть точка пересечения биссектрис треугольника.
Доказательство
Проведем биссектрисы углов (angle A) и (angle B) . Пусть они пересеклись в точке (O) .
Т.к. (O) лежит на биссектрисе (angle A) , то расстояния от точки (O) до сторон угла равны: (ON=OP) .
Т.к. (O) также лежит на биссектрисе (angle B) , то (ON=OK) . Таким образом, (OP=OK) , следовательно, точка (O) равноудалена от сторон угла (angle C) , следовательно, лежит на его биссектрисе, т.е. (CO) – биссектриса (angle C) .
Таким образом, точки (N, K, P) равноудалены от точки (O) , то есть лежат на одной окружности. По определению это и есть вписанная в треугольник окружность.
Данная окружность единственна, т.к. если предположить, что существует другая вписанная в (triangle ABC) окружность, то она будет иметь тот же центр и тот же радиус, то есть будет совпадать с первой окружностью.
Таким образом, попутно была доказана следующая теорема:
Следствие
Биссектрисы треугольника пересекаются в одной точке.
Теорема о площади описанного треугольника
Если (a,b,c) – стороны треугольника, а (r) – радиус вписанной в него окружности, то площадь треугольника [S_=pcdot r] где (p=dfrac2) – полупериметр треугольника.
Доказательство
Но (ON=OK=OP=r) – радиусы вписанной окружности, следовательно,
Следствие
Если в многоугольник вписана окружность и (r) – ее радиус, то площадь многоугольника равна произведению полупериметра многоугольника на (r) : [S_<text>=pcdot r]
Теорема
В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Доказательство
Необходимость. Докажем, что если в (ABCD) вписана окружность, то (AB+CD=BC+AD) .
Пусть (M,N,K,P) – точки касания окружности и сторон четырехугольника. Тогда (AM, AP) – отрезки касательных к окружности, проведенные из одной точки, следовательно, (AM=AP=a) . Аналогично, (BM=BN=b, CN=CK=c, DK=DP=d) .
Достаточность. Докажем, что если суммы противоположных сторон четырехугольника равны, то в него можно вписать окружность.
Проведем биссектрисы углов (angle A) и (angle B) , пусть они пересекутся в точке (O) . Тогда точка (O) равноудалена от сторон этих углов, то есть от (AB, BC, AD) . Впишем окружность в (angle A) и (angle B) с центром в точке (O) . Докажем, что эта окружность будет касаться и стороны (CD) .
Предположим, что это не так. Тогда (CD) либо является секущей, либо не имеет общих точек с окружностью. Рассмотрим второй случай (первый будет доказываться аналогично).
Проведем касательную прямую (C’D’ parallel CD) (как показано на рисунке). Тогда (ABC’D’) – описанный четырехугольник, следовательно, (AB+C’D’=BC’+AD’) .
Т.к. (BC’=BC-CC’, AD’=AD-DD’) , то:
[AB+C’D’=BC-CC’+AD-DD’ Rightarrow C’D’+CC’+DD’=BC+AD-AB=CD]
Получили, что в четырехугольнике (C’CDD’) сумма трех сторон равна четвертой, что невозможно*. Следовательно, предположение ошибочно, значит, (CD) касается окружности.
Замечание*. Докажем, что в выпуклом четырехугольнике не может сторона равняться сумме трех других.
Т.к. в любом треугольнике сумма двух сторон всегда больше третьей, то (a+x>d) и (b+c>x) . Складывая данные неравенства, получим: (a+x+b+c>d+x Rightarrow a+b+c>d) . Следовательно, сумма любых трех сторон всегда больше четвертой стороны.
Теоремы
1. Если в параллелограмм вписана окружность, то он – ромб (рис. 1).
2. Если в прямоугольник вписана окружность, то он – квадрат (рис. 2).
Верны и обратные утверждения: в любой ромб и квадрат можно вписать окружность, и притом только одну.
Доказательство
1) Рассмотрим параллелограмм (ABCD) , в который вписана окружность. Тогда (AB+CD=BC+AD) . Но в параллелограмме противоположные стороны равны, т.е. (AB=CD, BC=AD) . Следовательно, (2AB=2BC) , а значит, (AB=BC=CD=AD) , т.е. это ромб.
Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей ромба.
2) Рассмотрим прямоугольник (QWER) . Т.к. прямоугольник является параллелограммом, то согласно первому пункту (QW=WE=ER=RQ) , т.е. это ромб. Но т.к. все углы у него прямые, то это квадрат.
Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей квадрата.
Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Вписанная и описанная окружности
Вы будете перенаправлены на Автор24
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Вписанная окружность
Если все стороны многоугольника являются касательными одной окружности, то такая окружность называется вписанной в многоугольник (рис 1).
Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.
Рисунок 1. Вписанная окружность
Видео:Это будет на ЕГЭ 2020 по математике. Вписанная и вневписанная окружности.Скачать
Теорема 1 (об окружности, вписанной в треугольник)
В любой треугольник можно вписать окружность и притом только одну.
Доказательство.
Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)
Рисунок 2. Иллюстрация теоремы 1
Существование: Проведем окружность с центром в точке $O$ и радиусом $OK. $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M и L$. Так как $OM,OK и OL$ — перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.
Готовые работы на аналогичную тему
Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O’$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.
Теорема доказана.
Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.
Приведем еще несколько фактов, связанных с понятием вписанной окружности:
Не во всякий четырехугольник можно вписать окружность.
В любом описанном четырехугольнике суммы противоположных сторон равны.
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Описанная окружность
Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).
Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.
Рисунок 3. Описанная окружность
Видео:ВПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Теорема 2 (об окружности, описанной около треугольника)
Около любого треугольника можно описать окружность и притом только одну.
Доказательство.
Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)
Рисунок 4. Иллюстрация теоремы 2
Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.
Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O’$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.
Теорема доказана.
Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.
Приведем еще несколько фактов, связанных с понятием описанной окружности:
Около четырехугольника не всегда можно описать окружность.
В любом вписанном четырехугольнике сумма противоположных углов равна $^0$.
Если сумма противоположных углов четырехугольника равна $^0$, то около него можно описать окружность.
Видео:№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать
Пример задачи на понятия вписанной и описанной окружности
В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.
Решение.
Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:
Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора $^2=^2-^2, BM=sqrt<^2-frac<^2>>=sqrt=sqrt=3$. $OM=OH=r$ — искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4 см$. Следовательно, $BH=5-4=1 см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:
Ответ: $frac$.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 29 03 2022
📹 Видео
ВАЖНЫЙ факт вписанной окружности ✧ Запомнить за минуту!Скачать
Радиус описанной окружности трапецииСкачать
✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать
8 класс, 38 урок, Вписанная окружностьСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Радиус вписанной окружности, формулу через площадь и полупериметрСкачать
Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬСкачать
Вписанная окружностьСкачать
Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать
Радиус описанной окружностиСкачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Все о вписанных и описанных окружностях с нуля | PARTAСкачать