Если треугольник равносторонний то он

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Если треугольник равносторонний то он

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Если треугольник равносторонний то он

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

Если треугольник равносторонний то он

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Если треугольник равносторонний то он

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Если треугольник равносторонний то он

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

Если треугольник равносторонний то он

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
Если треугольник равносторонний то он

2. Радиус вписанной окружности:
Если треугольник равносторонний то он

3. Радиус описанной окружности:
Если треугольник равносторонний то он

4. Периметр:
Если треугольник равносторонний то он

5. Площадь:
Если треугольник равносторонний то он

Видео:Равносторонний треугольник в окружностиСкачать

Равносторонний треугольник в окружности

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Признаки равностороннего треугольника

Как определить, что треугольник — равносторонний? Это можно сделать, использовав либо определение, либо признаки равностороннего треугольника.

По определению, треугольник равносторонний, если все его стороны равны.

Признаки равностороннего треугольника

1) Если у треугольника все углы равны, то этот треугольник — равносторонний.

Если треугольник равносторонний то он

то треугольник ABC — равносторонний.

2) Если у треугольника совпадают проведённые к двум сторонам

— медиана и высота

— биссектриса и высота

— медиана и биссектриса,

то этот треугольник — равносторонний.

Если треугольник равносторонний то он

Если AK и BF (или AK и CD, или BF и CD)

— медианы и высоты

— или биссектрисы и высоты

— или медианы и биссектрисы,

то треугольник ABC — равносторонний.

3) Если у треугольника центр вписанной и описанной окружностей совпадают, то этот треугольник — равносторонний.

Если треугольник равносторонний то онЕсли точка O для треугольника ABC —

Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Треугольник равносторонний: свойства, признаки, площадь, периметр

В школьном курсе геометрии огромное количество времени уделяется изучению треугольников. Ученики вычисляют углы, строят биссектрисы и высоты, выясняют, чем фигуры отличаются друг от друга, и как проще всего найти их площадь и периметр. Кажется, что это никак не пригодится в жизни, но иногда все-таки полезно узнать, например, как определить, что треугольник равносторонний или тупоугольный. Как же это сделать?

Видео:№225. Докажите, что каждый угол равностороннего треугольника равен 60°.Скачать

№225. Докажите, что каждый угол равностороннего треугольника равен 60°.

Типы треугольников

Три точки, которые не лежат на одной прямой, и отрезки, которые их соединяют. Кажется, что эта фигура — самая простая. Какими могут быть треугольники, если у них всего три стороны? На самом деле вариантов довольно большое количество, и некоторым из них уделяется особое внимание в рамках школьного курса геометрии. Правильный треугольник — равносторонний, то есть все его углы и стороны равны. Он обладает рядом примечательных свойств, о которых речь пойдет дальше.

У равнобедренного равны только две стороны, и он также довольно интересен. У прямоугольного и тупоугольного треугольников, как несложно догадаться, соответственно, один из углов прямой или тупой. При этом они также могут равнобедренными.

Если треугольник равносторонний то он

Существует и особый вид треугольника, называемый египетским. Его стороны равны 3, 4 и 5 единицам. При этом он является прямоугольным. Считается, что такой треугольник активно использовался египетскими землемерами и архитекторами для построения прямых углов. Есть мнение, что с его помощью были возведены знаменитые пирамиды.

И все-таки все вершины треугольника могут лежать на одной прямой. В этом случае он будет называться вырожденным, в то время как все остальные — невырожденными. Именно они и являются одним из предметов изучения геометрии.

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Треугольник равносторонний

Разумеется, правильные фигуры вызывают всегда наибольший интерес. Они кажутся более совершенными, более изящными. Формулы вычисления их характеристик зачастую проще и короче, чем для обычных фигур. Это относится и к треугольникам. Неудивительно, что при изучении геометрии им уделяется достаточно много внимания: школьников учат отличать правильные фигуры от остальных, а также рассказывают о некоторых их интересных характеристиках.

Видео:№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольник

Признаки и свойства

Как нетрудно догадаться из названия, каждая сторона равностороннего треугольника равна двум другим. Кроме того, он обладает рядом признаков, благодаря которым можно определить, правильная ли фигура или нет.

  • все его углы равны, их величина составляет 60 градусов;
  • биссектрисы, высоты и медианы, проведенные из каждой вершины, совпадают;
  • правильный треугольник имеет 3 оси симметрии, он не изменяется при повороте на 120 градусов.
  • центр вписанной окружности также является центром описанной окружности и точкой пересечения медиан, биссектрис, высот и срединных перпендикуляров.

Если треугольник равносторонний то он

Если наблюдается хотя бы один из вышеперечисленных признаков, то треугольник — равносторонний. Для правильной фигуры справедливы все упомянутые утверждения.

Все треугольники обладают рядом примечательных свойств. Во-первых, средняя линия, то есть отрезок, делящий две стороны пополам и параллельный третьей, равна половине основания. Во-вторых, сумма всех углов этой фигуры всегда равна 180 градусам. Кроме того, в треугольниках наблюдается еще одна любопытная взаимосвязь. Так, против большей стороны лежит больший угол и наоборот. Но это, конечно, к равностороннему треугольнику отношения не имеет, ведь у него все углы равны.

Видео:Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

Вписанные и описанные окружности

Нередко в курсе геометрии учащиеся также изучают то, как фигуры могут взаимодействовать друг с другом. В частности, изучаются окружности, вписанные в многоугольники или описанные около них. О чем идет речь?

Вписанной называют такую окружность, для которой все стороны многоугольника являются касательными. Описанной — ту, которая имеет точки соприкосновения со всеми углами. Для каждого треугольника всегда можно построить как первую, так и вторую окружность, но только одну каждого вида. Доказательства двух этих

Если треугольник равносторонний то он

Помимо вычисления параметров самих треугольников, некоторые задачи также подразумевают расчет радиусов этих окружностей. И формулы применительно к
равностороннему треугольнику выглядят следующим образом:

где r — радиус вписанной окружности, R — радиус описанной окружности, a — длина стороны треугольника.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Вычисление высоты, периметра и площади

Основные параметры, вычислением которых занимаются школьники во время изучения геометрии, остаются неизменными практически для любых фигур. Это периметр, площадь и высота. Для простоты расчетов существуют различные формулы.

Если треугольник равносторонний то он

P = 3a = 3√ ̅3R = 6√ ̅3r, где a — сторона правильного треугольника, R — радиус описанной окружности, r — вписанной.

h = (√ ̅3/2)*a, где a — длина стороны.

Наконец, формула площади равностороннего треугольника выводится из стандартной, то есть произведения половины основания на его высоту.

S = (√ ̅3/4)*a 2 , где a — длина стороны.

Также эта величина может быть вычислена через параметры описанной или вписанной окружности. Для этого также существуют специальные формулы:

S = 3√ ̅3r 2 = (3√ ̅3/4)*R 2 , где r и R — соответственно радиусы вписанной и описанной окружностей.

Видео:Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Построение

Еще один интересный тип задач, касающийся в том числе и треугольников, связан с необходимостью начертить ту или иную фигуру, используя минимальный набор

Если треугольник равносторонний то он

Для того чтобы построить правильный треугольник с помощью только этих приспособлений, необходимо выполнить несколько шагов.

  1. Нужно начертить окружность с любым радиусом и с центром в произвольно взятой точке А. Ее необходимо отметить.
  2. Далее нужно провести прямую через эту точку.
  3. Пересечения окружности и прямой необходимо обозначить как В и С. Все построения должны проводиться с максимально возможной точностью.
  4. Далее надо построить еще одну окружность с тем же радиусом и центром в точке С или дугу с соответствующими параметрами. Места пересечения будут обозначены как D и F.
  5. Точки B, F, D необходимо соединить отрезками. Равносторонний треугольник построен.

Решение подобных задач обычно представляет для школьников проблему, но это умение может пригодиться и в обычной жизни.

📹 Видео

ПОМОГИТЕ ДОКАЗАТЬ Если две биссектрисы равны, то треугольник равнобедренныйСкачать

ПОМОГИТЕ ДОКАЗАТЬ Если две биссектрисы равны, то треугольник равнобедренный

Геометрия Докажите, что если в треугольнике две высоты равны, то он равнобедренный.Скачать

Геометрия Докажите, что если в треугольнике две высоты равны, то он равнобедренный.

№232. Верно ли утверждение: если треугольник равнобедренный, то один из его внешнихСкачать

№232. Верно ли утверждение: если треугольник равнобедренный, то один из его внешних

№133. Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольникСкачать

№133. Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольник

Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать

Задание 15 ОГЭ. Медиана равностороннего треугольника

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

ОГЭ Задание 25 Доказать что треугольник равностороннийСкачать

ОГЭ Задание 25 Доказать что треугольник равносторонний

Равнобедренный треугольник! #огэ #математика #огэматематика #семенСкачать

Равнобедренный треугольник!  #огэ #математика #огэматематика #семен

7 фактов про равносторонний треугольникСкачать

7 фактов про равносторонний треугольник
Поделиться или сохранить к себе: