Если трапеция описана и вписана окружность

Трапеция.

Если трапеция описана и вписана окружность

Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.

Трапеция называется равнобедренной, если её боковые стороны равны.

Трапеция называется прямоугольной, если у нее два угла прямые.

Основные свойства трапеции:

  1. Сумма углов при каждой боковой стороне трапеции равна 180°.
  2. Средняя линия трапеция параллельна её основаниям и равна их полусумме.
  3. В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
  4. Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
  5. Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
  6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
  7. Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
  8. Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
  9. Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
  10. Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
  11. Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.

Свойства равнобедренной трапеции:

  1. Диагонали равны.
  2. Углы при основании равны.
  3. Сумма противоположных углов равна 180°.
  4. Около равнобедренной трапеции можно описать окружность.
  5. Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.

Описанная трапеция:

  1. Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
  2. Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
  3. Радиус вписанной окружности равен половине высоты трапеции.

Вписанная трапеция:

  1. Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.

Площадь трапеции:

  1. Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
  2. Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Если трапеция описана и вписана окружность

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Если трапеция описана и вписана окружность

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Если трапеция описана и вписана окружность

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Если трапеция описана и вписана окружность

Видео:Окружность, вписанная в трапециюСкачать

Окружность, вписанная в трапецию

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Если трапеция описана и вписана окружность

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Если трапеция описана и вписана окружность

3. Треугольники Если трапеция описана и вписана окружностьи Если трапеция описана и вписана окружность, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Если трапеция описана и вписана окружность

Отношение площадей этих треугольников есть Если трапеция описана и вписана окружность.

Если трапеция описана и вписана окружность

4. Треугольники Если трапеция описана и вписана окружностьи Если трапеция описана и вписана окружность, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Если трапеция описана и вписана окружность

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Если трапеция описана и вписана окружность

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Если трапеция описана и вписана окружность

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Если трапеция описана и вписана окружность

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Если трапеция описана и вписана окружность

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Если трапеция описана и вписана окружность

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Если трапеция описана и вписана окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Если трапеция описана и вписана окружность

Видео:Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

Вписанная окружность

Если в трапецию вписана окружность с радиусом Если трапеция описана и вписана окружностьи она делит боковую сторону точкой касания на два отрезка — Если трапеция описана и вписана окружностьи Если трапеция описана и вписана окружность, то Если трапеция описана и вписана окружность

Если трапеция описана и вписана окружность

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Площадь

Если трапеция описана и вписана окружностьили Если трапеция описана и вписана окружностьгде Если трапеция описана и вписана окружность– средняя линия

Если трапеция описана и вписана окружность

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Около трапеции описана окружностьСкачать

Около трапеции описана окружность

Если трапеция описана и вписана окружность

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.^$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.^$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

Если трапеция описана и вписана окружность

$$ 4.^$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.^$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.^$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.^$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

Если трапеция описана и вписана окружность

$$ 4.^$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.^$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

Если трапеция описана и вписана окружность

$$ 4.^$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.^$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.^$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.^$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

`d^2=c^2+ab`.

Если трапеция описана и вписана окружность

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.^$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

Если трапеция описана и вписана окружность

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.^$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Если трапеция описана и вписана окружность

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Если трапеция описана и вписана окружность

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.^$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.^$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.^$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.^$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.^$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

🎦 Видео

Трапеция, вписанная в окружностьСкачать

Трапеция, вписанная в окружность

Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Геометрия В прямоугольную трапецию вписана окружность. Найдите её радиус, если основания трапецииСкачать

Геометрия В прямоугольную трапецию вписана окружность. Найдите её радиус, если основания трапеции

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Трапеция в окружности. Задача Шаталова.Скачать

Трапеция в окружности. Задача Шаталова.

Задание 26_Равнобедренная трапеция. Вписанная окружность.Скачать

Задание 26_Равнобедренная трапеция. Вписанная окружность.

Задание 18 Описанная трапецияСкачать

Задание 18 Описанная трапеция

ОГЭ Задание 24 Трапеция Описанная и вписанная окружностиСкачать

ОГЭ Задание 24 Трапеция Описанная и вписанная окружности

Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать

Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторону

Задание 26 Равнобедренная трапеция, описанная и вписанная окружностиСкачать

Задание 26 Равнобедренная трапеция, описанная и вписанная окружности

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.
Поделиться или сохранить к себе: