- Сумма углов четырехугольника
- Свойства
- Четырехугольники, вписанные в окружность. Теорема Птолемея
- Вписанные четырёхугольники и их свойства
- Теорема Птолемея
- Около четырехугольника можно описать окружность
- Четырехугольники, вписанные в окружность. Теорема Птолемея
- Вписанные четырёхугольники и их свойства
- Теорема Птолемея
- Четырехугольник, вписанный в окружность
- 📸 Видео
Видео:Сумма углов выпуклого четырёхугольника равна 360°. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Сумма углов четырехугольника
Свойства
- Сумма углов четырехугольника равна 360°.
∠A + ∠B + ∠C + ∠D = 360°. - Если четырехугольник правильный, то каждый угол по 90°
и этот четырехугольник является квадратом.
∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
ABCD — квадрат. - Сумма противоположных углов четырехугольника равна 180°,
если около четырехугольника описана окружность.
∠A + ∠С = ∠В + ∠D = 180°.
Такие четырехугольники называют вписанными.
Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.
Видео:Геометрия Докажите что сумма углов четырехугольника равна 360.Скачать
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Видео:Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:Задание 24 Сумма углов четырехугольникаСкачать
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:3 правила для вписанного четырехугольника #shortsСкачать
Около четырехугольника можно описать окружность
Теорема (свойство вписанного четырёхугольника)
Сумма противолежащих углов вписанного четырёхугольника равна 180°.
Дано: ABCD вписан в окр. (O; R)
∠A — вписанный угол, опирающийся на дугу BCD.
∠C — вписанный угол, опирающийся на дугу DAB.
Так как вписанный угол равен половине дуги, на которую он опирается, то
Что и требовалось доказать.
Теорема (признак вписанного четырёхугольника)
Около четырёхугольника можно описать окружность, если сумма его противолежащих углов равна 180°.
Дано: ABCD — четырёхугольник,
Доказать: ABCD можно вписать в окружность
Опишем окружность около треугольника ABC и докажем, что точка D лежит на этой окружности.
Доказательство будем вести методом от противного.
Предположим, что точка D не лежит на описанной около треугольника ABD окружности. Тогда D лежит либо внутри этой окружности, либо вне её.
Пусть точка D лежит внутри окружности и луч AD пересекает окружность в точке E.
В этом случае четырёхугольник ABCE — вписанный, и сумма его противолежащих углов равна 180°: ∠B+∠E=180°.
По условию, ∠B+∠D=180°. Отсюда следует, что ∠D=∠E.
Но угол D — внешний угол треугольника DCE при вершине D.
Так как внешний угол треугольника равен сумме двух внутренних не смежных с ним углов, то
∠ADC=∠DEC+∠DCE, то есть угол D не может быть равным углу E. Пришли к противоречию. А значит, точка D не может лежать внутри окружности, описанной около треугольника ABC.
Предположим, что точка D лежит вне описанной около треугольника ABC окружности.
Луч AD пересекает окружность в точке E.
Тогда ABCE — вписанный четырёхугольник и ∠B+∠E=180°.
По условию, ∠B+∠D=180°. Получаем, что ∠D=∠E.
Но угол E — внешний угол треугольника ECD при вершине E. А значит,
∠AEC=∠EDC+∠DCE, то есть углы D и E не могут быть равными. Противоречие получили потому, что предположили, что точка D лежит вне окружности.
Так как точка D не может лежать внутри либо вне описанной около треугольника ABC окружности, то D лежит на этой окружности. Это значит, что около четырёхугольника ABCD можно описать окружность.
Что и требовалось доказать.
На основании свойства и признака вписанного четырёхугольника сформулируем необходимое и достаточное условие вписанного четырёхугольника.
Теорема (Необходимое и достаточное условие вписанного четырёхугольника)
Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма уго противолежащих углов равна 180°.
Видео:Сумма углов четырехугольника | Математика 8 класс | Четырехугольник | Геометрия 8 классСкачать
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Видео:ПОЧЕМУ СУММА УГЛОВ ЧЕТЫРЁХУГОЛЬНИКА РАВНА 360? #shorts #егэ #огэ #математика #геометрияСкачать
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||||||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||||||
Окружность, описанная около ромба | ||||||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||||||
Окружность, описанная около трапеции | ||||||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||||||
Окружность, описанная около дельтоида | ||||||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||||||
Произвольный вписанный четырёхугольник | ||||||
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:Вписанный в окружность четырёхугольник.Скачать
Четырехугольник, вписанный в окружность
Определение 1. Четырехугольник называют вписанным в окружность, если все вершины четырехугольника лежат на окружности.
На рисунке 1 четырехугольник ABCD вписан в окружность. В этом случае говорят также, что окружность описан около четырехугольника.
Теорема 1. Если четырехугольник вписан в окружность, то сумма противолежащих углов четырехугольника равна 180°.
Доказательство. Пусть четырехугольник ABCD вписан в окружность (Рис.1). Докажем, что .
Углы A и C являются вписанными. Следовательно:
, |
Но Следовательно
Аналогично можно показать, что .
Заметим, что из следует , поскольку сумма углов четырехугольника равна 360°.
Как известно, вокруг любого треугольника можно описать окружность (см. статью Окружность, описанная около треугольника). Однако вокруг не каждого четырехугольника можно описать окружность. Например, если параллелограмм не является прямоугольником, то вокруг него не возможно описать окружность. Следующая теорема позволяет распознать четрехугольники, вокруг которых можно описать окружность.
Теорема 2. Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.
Доказательство. Пусть задан четырехугольник ABCD и пусть . Докажем, что около него можно описать окружность.
Предположим, что около этого четырехугольника невозможно описать окружность. Рассмотрим треугольник ABD и опишем окружность около этого треугольника (как отметили выше около любого треугольника можно описать окружность). Поскольку мы предположили, что у этого четырехугольника невозможно описать окружность, то точка C не принадлежит этой окружности. Поэтому эта точка лежит вне окружности или находится внутри окружности.
Случай 1. Точка C лежит вне описанной окружности (Рис.2).
Тогда сторона BC пересекает этот окружность. Обозначим эту точку C1. Четырехугольник ABC1D вписан в окружность. Тогда по теореме 1 имеем: . Но по условию теоремы . Следовательно . С другой стороны, угол BC1D является внешним углом треугольника DC1C, т.е. выполняется равенство . Получили противоречие, следовательно точка C не может лежать вне окружности.
Случай 2. Точка C лежит внутри описанной окружности (Рис.3).
Проведем прямую BC и точку пересечения прямой и окружности обозначим C1. Получили четырехугольник ABC1D вписанный в окружность. Тогда по теореме 1 имеем: . Но по условию данной теоремы. Следовательно, .
С другой стороны, угол C (т.е. угол BCD) является внешним углом треугольника DC1C, т.е. выполняется равенство . Получили противоречие, следовательно точка C не может лежать внутри окружности.
Следовательно точка C лежит на окружности.
Теорема 2 можно рассматривать метод определения принадлежности четырех точек одной окружности. Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех вершин четырехугольника (это центр окружности). Чтобы найти эту точку достаточно построить серединные перпендикуляры двух соседних сторон четырехугольника и найти точку их пересечения.
📸 Видео
Всё про углы в окружности. Геометрия | МатематикаСкачать
Чему равна сумма углов выпуклого многоугольникаСкачать
Сумма углов любого треугольника равна 360°. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
№1082. Чему равна сумма внешних углов правильного n-угольника, если при каждой вершинеСкачать
Сумма углов вписанного четырехугольникаСкачать
8 класс. Четырехугольник и окружностьСкачать
ВЕБИНАР № 1. Планиметрия. Центральные и вписанные углы. Сумма углов вписанного четырехугольника.Скачать
Геометрия. Окружность. Вписанный четырехугольник. Тренажёр ОГЭ.Скачать
Геометрия 16.04.2020 | Окружность, вписанная в четырёхугольникСкачать
ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать
Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать