Какое из следующих утверждений верно?
1) Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.
2) Вписанные углы окружности равны.
3) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.
4) Через любые четыре точки, не принадлежащие одной прямой, проходит единственная окружность.
Проверим каждое из утверждений.
1) «Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.» — неверно, если расстояние между центрами двух окружностей равно сумме их радиусов, то эти окружности касаются.
2) «Вписанные углы окружности равны.» — неверно, угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом. Они равны тогда, когда опираются на одну и ту же дугу.
3) «Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.» — верно, вписанный угол измеряется половиной дуги, на которую он опирается.
4) «Через любые четыре точки, не принадлежащие одной прямой, проходит единственная окружность.» — неверно, некоторые точки могут не попасть на окружность.
Видео:Планиметрия 11 |mathus.ru| расстояние между центрами пересекающихся окружностейСкачать
Решение задачи 19. Вариант 225 (ОГЭ)
Какие из следующих утверждений верны? Если верных утверждений несколько, запишите их номера в порядке возрастания без пробелов, запятых и других символов между ними.
1) Если расстояние между центрами двух окружностей равно сумме их
диаметров, то эти окружности касаются.
2) Вписанные углы окружности равны.
3) Если вписанный угол равен 30, то дуга окружности, на которую он опирается,
равна 60.
2-в общем случае неверно, они будут равны, если они опираются на одну дугу
3-это верно, т.к вписанный угол равен половине дуги на которую опирается.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Две окружности на плоскости.
Общие касательные к двум окружностям
Взаимное расположение двух окружностей |
Общие касательные к двум окружностям |
Формулы для длин общих касательных и общей хорды |
Доказательства формул для длин общих касательных и общей хорды |
Видео:"Парадоксальное" среднее расстояние между точками на окружностиСкачать
Взаимное расположение двух окружностей
Фигура | Рисунок | Свойства |
Две окружности на плоскости | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Расстояние между центрами окружностей больше суммы их радиусов | ||
Внешнее касание двух окружностей | ||
Расстояние между центрами окружностей равно сумме их радиусов | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
Внутренняя касательная к двум окружностям | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Внешнее касание двух окружностей | ||
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Внутреннее касание двух окружностей | |
Окружности пересекаются в двух точках | |
Внешнее касание двух окружностей | |
Каждая из окружностей лежит вне другой | |
Внешняя касательная к двум окружностям | |||||||||||||||||||||
Внутренняя касательная к двум окружностям | |||||||||||||||||||||
Внутреннее касание двух окружностей | |||||||||||||||||||||
Окружности пересекаются в двух точках | |||||||||||||||||||||
Внешнее касание двух окружностей | |||||||||||||||||||||
Каждая из окружностей лежит вне другой | |||||||||||||||||||||
Фигура | Рисунок | Формула | ||||||||||||
Внешняя касательная к двум окружностям | ||||||||||||||
Внутренняя касательная к двум окружностям | ||||||||||||||
Общая хорда двух пересекающихся окружностей |
Внешняя касательная к двум окружностям | ||||
Внутренняя касательная к двум окружностям | ||||
Общая хорда двух пересекающихся окружностей | ||||
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Общая хорда двух пересекающихся окружностей |
Длина общей хорды двух окружностей вычисляется по формуле Видео:Теорема о числе точек пересечения двух окружностейСкачать Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, 🎦 ВидеоУрок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать Расстояние между центрами. Окружность. Математика 10-11 классы.Скачать Взаимное расположение двух окружностей. Урок 8. Геометрия 9 классСкачать Планиметрия 5 | mathus.ru | расстояние между центрами окружностей в параллелограммеСкачать Окружность. 7 класс.Скачать Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)Скачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать 9 класс, 8 урок, Взаимное расположение двух окружностейСкачать Расстояние между точками. Геометрия 9 класс.Скачать Уравнение окружности и формула расстояния между точками на плоскостиСкачать Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать Решение задач на тему центральные и вписанные углы.Скачать Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностейСкачать Занятие 7. Окружность. Центральные и вписанные углы. Планиметрия для ЕГЭ и ОГЭСкачать |