Если прямая проходит через центр окружности

Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Если прямая проходит через центр окружностиОтрезки и прямые, связанные с окружностью
Если прямая проходит через центр окружностиСвойства хорд и дуг окружности
Если прямая проходит через центр окружностиТеоремы о длинах хорд, касательных и секущих
Если прямая проходит через центр окружностиДоказательства теорем о длинах хорд, касательных и секущих
Если прямая проходит через центр окружностиТеорема о бабочке

Если прямая проходит через центр окружности

Видео:Быстро и легко определяем центр любой окружностиСкачать

Быстро и легко определяем центр любой окружности

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьЕсли прямая проходит через центр окружности
КругЕсли прямая проходит через центр окружности
РадиусЕсли прямая проходит через центр окружности
ХордаЕсли прямая проходит через центр окружности
ДиаметрЕсли прямая проходит через центр окружности
КасательнаяЕсли прямая проходит через центр окружности
СекущаяЕсли прямая проходит через центр окружности
Окружность
Если прямая проходит через центр окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругЕсли прямая проходит через центр окружности

Конечная часть плоскости, ограниченная окружностью

РадиусЕсли прямая проходит через центр окружности

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаЕсли прямая проходит через центр окружности

Отрезок, соединяющий две любые точки окружности

ДиаметрЕсли прямая проходит через центр окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяЕсли прямая проходит через центр окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяЕсли прямая проходит через центр окружности

Прямая, пересекающая окружность в двух точках

Видео:№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мноСкачать

№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мно

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеЕсли прямая проходит через центр окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыЕсли прямая проходит через центр окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныЕсли прямая проходит через центр окружностиБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиЕсли прямая проходит через центр окружностиУ равных дуг равны и хорды.
Параллельные хордыЕсли прямая проходит через центр окружностиДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Если прямая проходит через центр окружности

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыЕсли прямая проходит через центр окружности

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыЕсли прямая проходит через центр окружности

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиЕсли прямая проходит через центр окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныЕсли прямая проходит через центр окружности

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиЕсли прямая проходит через центр окружности

У равных дуг равны и хорды.

Параллельные хордыЕсли прямая проходит через центр окружности

Дуги, заключённые между параллельными хордами, равны.

Видео:Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать

Пирамиды,  в которых высота проходит через центр описанной около основания окружности

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если прямая проходит через центр окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

ФигураРисунокТеорема
Пересекающиеся хордыЕсли прямая проходит через центр окружности
Касательные, проведённые к окружности из одной точкиЕсли прямая проходит через центр окружности
Касательная и секущая, проведённые к окружности из одной точкиЕсли прямая проходит через центр окружности
Секущие, проведённые из одной точки вне кругаЕсли прямая проходит через центр окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если прямая проходит через центр окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Пересекающиеся хорды
Если прямая проходит через центр окружности
Касательные, проведённые к окружности из одной точки
Если прямая проходит через центр окружности
Касательная и секущая, проведённые к окружности из одной точки
Если прямая проходит через центр окружности
Секущие, проведённые из одной точки вне круга
Если прямая проходит через центр окружности
Пересекающиеся хорды
Если прямая проходит через центр окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если прямая проходит через центр окружности

Касательные, проведённые к окружности из одной точки

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Секущие, проведённые из одной точки вне круга

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Видео:№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр ОСкачать

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр О

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Тогда справедливо равенство

Если прямая проходит через центр окружности

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Если прямая проходит через центр окружности

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Если прямая проходит через центр окружности

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Если прямая проходит через центр окружности

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Если прямая проходит через центр окружности

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Если прямая проходит через центр окружности

откуда и вытекает требуемое утверждение.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Воспользовавшись теоремой 1, получим

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Воспользовавшись равенствами (1) и (2), получим

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Если прямая проходит через центр окружности

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).

Взаимное расположение прямой и окружности

Выясним количество общих точек прямой и окружности в зависимости от их взаимного расположения. Если прямая l проходит через центр O окружности (Рис.1), то она пересекает окружность в двух точках, которые являются концами диаметра окружности.

Пусть прямая не проходит через центр окружности. Проведем перпендикуляр OH к прямой l (Рис.2, Рис.3, Рис.4). Обозначим расстояние от центра окружности до прямой l буквой d. Рассмотрим сколько общих точек будут иметь прямая и окружность в зависимости от соотношения d и r.

Если прямая проходит через центр окружностиЕсли прямая проходит через центр окружности

Теорема 1. Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.

В этом случае прямая называется секущей по отношению к окружности.

Доказательство. Пусть расстояние от центра окружности до прямой меньше радиуса окружности: d Теорема 2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют одну общую точку.

Если прямая проходит через центр окружности

Доказательство. Пусть расстояние от центра окружности до прямой равно радиусу окружности: d=r (Рис.3). В этом случае OH=r, т.е. точка H лежит на окружности и является общей точкой прямой l и окружности. Возьмем на прямой l любую точку M отличной от H. Тогда расстояние от OM больше расстояния OH=r, поскольку наклонная OM больше перпендикуляра OH к прямой l. Следовательно точка M не лежит на окружности. Получили, что точка H единственная общая точка прямой l и окружности.Если прямая проходит через центр окружности

Теорема 3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.

Если прямая проходит через центр окружности

Доказательство. Пусть расстояние от центра окружности до прямой больше радиуса окружности:d>r (Рис.4). Тогда ( small OH > r). Возьмем на прямой l любую точку M отличной от H. Тогда ( small OM > OH>r). Следовательно точка M не лежит на окружности. Таким образом, если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.Если прямая проходит через центр окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Взаимное расположение прямой и окружности

Если прямая проходит через центр окружности

Взаимное расположение прямой и окружности Выясним, сколько общих точек могут иметь прямая и окружность в зависимости от их взаимного расположения. Ясно, что если прямая проходит через центр окружности, то она пересекает окружность в двух концах диаметра, лежащего на. этой примой.

Пусть прямая р не проходит через центр О окружности радиуса r. Проведем перпендикуляр ОН к прямой р и обозначим буквой d длину этого перпендикуляра, т. е, расстояние от центра данной окружности до прямой (рис. 1). Исследуем взаимное расположение прямой и окружности в зависимости от соотношения между d и r. Возможны три случая.

1) d ОН= r (наклонная ОМ больше перпендикуляра ОН), и, следовательно , точка М не лежит на окружности. Итак, если расстояние от центра окружности до прямой равно радиусу то прямая и окружность имеют только одну общую точку.

3) d>r В этом случае -ОН> r поэтому .для любой точки М прямой р 0МЕсли прямая проходит через центр окружностиОН.> r(рис.1,а) Следовательно точка М не лежит на окружности. Итак, .если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.

Мы доказали, что прямая и окружность могут иметь одну или две общие точки и могут не иметь ни одной общей точки. Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. На рисунке 2 прямая р — касательная к окружности с центром О, А точка касания.

Докажем теорему о свойстве касательной.

Теорема. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство. Пусть р— касательная к окружности с центром О. А — точка касания (см. рис. 2). Докажем. что касательная р перпендикулярна к радиусу ОА.

Предположим, что это не так. Тогда радиус: ОА является наклонной к прямой р. Так как перпендикуляр, проведенный из точки О к прямой р, меньше наклонной ОА, то расстояния от центра О окружности до прямой р меньше радиуса. Следовательно, прямая р и окружность имеют две общие точки. Но это противоречит условию; прямая р — касательная. Таким образом, прямая р перпендикулярна к радиусу ОА. Теорема доказала.

Рассмотрим две касательные к окружности с центром О, проходящие через точку А и касающиеся окружности в точках В и С (рис. 3). Отрезки АВ и АС назовем отрезками касательных, проведенными из точки А. Они обладают следующим свойством, вытекающим из доказанной теоремы:

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Для доказательства этого утверждения обратимся к рисунку 3. По теореме о свойство касательной углы 1 и 2 прямые, поэтому треугольники АВО и АСО прямоугольные. Они равны, так как имеют общую гипотенузу ОА и равные катеты ОВ и ОС. Следовательно, АВ=АС и Если прямая проходит через центр окружности3=Если прямая проходит через центр окружности4, что и требовалось доказать. Докажем теперь теорему, обратную теореме о свойстве касательной (признак касательной).

Теорема. Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

Доказательство. Из условия теоремы следует, что данный радиус является перпендикуляром, проведенным из центра окружности к данной прямой. Поэтому расстояние от центра окружности до прямой равно радиусу, и, следовательно, прямая и окружность имеют только одну общую точку. Но это и означает, что данная прямая является касательной к окружности, Теорема доказана.

На этой теореме основано решение задач на построение касательной.

Если прямая проходит через центр окружности

Если прямая проходит через центр окружностиЕсли прямая проходит через центр окружности

Прямая и окружность могут, очевидно, находиться только в следующих трех относительных положениях:

1) Расстояние (ОС) центра от прямой (АВ) (т. е, длина перпендикуляра ОС, опущенного из центра на прямую) больше радиуса окружности (рис. 1). Тогда точка С прямой удалена от центра больше, чем радиус, и потому лежит вне круга. Так как все остальные точки прямой удалены от О еще более, чем точка С (наклонные длиннее перпендикуляра), то они все лежат вне круга, значит, тогда прямая не имеет никаких точек, общих с окружностью.

2) Расстояние (ОС) центра от прямой меньше радиуса. В этом случае (рис.2) точка С лежит внутри круга и тогда, очевидно, прямая пересекается с окружностью.

3> Расстояние (ОС) центра от прямой равно радиусу. Тогда точна С (рис. 3) принадлежит и прямой, и окружности, все же остальные точки прямой, будучи удалены от О более, чем точка С, лежат вне круга. Значит, в этом случае Прямая и окружность имеют только одну общую точку, именно ту, которая служит основанием перпендикуляра, опущенного из центра на прямую.

Такая прямая, которая с окружностью имеет только одну общую точку, называется касательной к окружности; общая точка называется точкой касания.

Относительно касательной мы докажем следующие две теоремы (прямую и обратную) (рис. 4):

1) если прямая (MN) перпендикулярна к радиусу (ОА) в конце его (А), лежащем на окружности, то она касается окружности, и обратно (рис. 4);

2) если прямая касается окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.

1) Точка А, как конец радиуса, лежащий на окружности, принадлежит этой окружности; в то же время она принадлежит и прямой MN, Значит, эта точка есть общая у окружности и прямой. Все же остальные точки прямой MN, как В, С и другие, отстоят от центра О дальше, чем на радиус (так как отрезки ОВ, ОС, . как наклонные, больше перпендикуляра ОА), и потому они лежат вне окружности. Таким образом, у прямой MN есть только одна точка (А), общая с окружностью, и, значит, прямая MN есть касательная.

2) Если МN касается окружности в точке А, то все остальные точки этой прямой должны лежать вне окружности; вследствие этого отрезки ОВ, ОС, . больше радиуса ОА (точка О есть центр окружности). Значит, этот радиус есть наименьший из отрезков, соединяющих точку О с любой точкой прямой MN, и потому ОА | MN.

Теорема. Если касательная параллельна хорде, то точка касания делит дугу, стягиваемую хордой, пополам.

Пусть прямая АВ касается окружности в точке М (рис. 5) и параллельна хорде CD; требуется доказать, что Если прямая проходит через центр окружности.

Проведя через точку касания диаметр МЕ, будем иметь: Если прямая проходит через центр окружности; поэтому Если прямая проходит через центр окружности

Если прямая проходит через центр окружностиЕсли прямая проходит через центр окружности

Если прямая проходит через центр окружностиЕсли прямая проходит через центр окружности

Если прямая проходит через центр окружности

Зависимость между дугами, хордами и расстояниями хорд от центра.

Теоремы. В одном круге или в равных кругах:

1) если дуги, равны, то стягивающие их хорды равны и одинаково удалены от центра;

2) если две дуги, меньшие полуокружности, не равны, то большая из них стягивается большей хордой и из обеих хорд большая расположена ближе к центру.

1) Пусть дуга АВ равна дуге CD (рис. 1), требуется доказать, что хорды АВ и CD равны, а также равны и перпендикуляры ОЕ и OF, опущенные из центра на хорды.

Повернем сектор OAJB вокруг центра О в направлении, указанном стрелкой на столько, чтобы радиус ОБ совпал с ОС. Тогда дуга ВА. пойдет по дуге CD и вследствие их равенства эти дуги совместятся. Значит, хорда AS совместится с хордой CD и перпендикуляр ОЕ совпадет с OF (из одной точки можно опустить на прямую только один перпендикуляр), т. е. AB=CD и OE=OF.

2) Пусть дуга АВ (рис. 2) меньше дуги CD, и притом обе дуги меньше полуокружности; требуется доказать, что хорда АВ меньше хорды CD, а перпендикуляр ОЕ больше перпендикуляра OF. Отложим на дуге CD дугу СК, равную АВ, и проведем вспомогательную хорду СК, которая, по доказанному, равна хорде АВ и одинаково с ней удалена от центра. У треугольников COD и СОК две стороны одного равны двум сторонам другого (как радиусы), а углы, заключенные между этими сторонами, не равны; в этом случае, как мы знаем, против большего из углов, т. е. lCOD, должна лежать большая сторона, значит, CD>CK, и потому CD>AB.

Для доказательства того, что OE>OF, проведем OLXCK и примем во внимание, что, по доказанному, OE=OL; следовательно, нам достаточно сравнить OF с OL. В прямоугольном треугольнике 0FM (покрытом на рисунке штрихами) гипотенуза ОМ больше катета OF; но OL>OM; значит, и подавно OL>OF. и потому OE>OF.

Теорема, доказанная нами для одного круга, остается верной и для равных кругов, потому что такие круги один от другого отличаются только положением.

Обратные теоремы. Так как в предыдущем параграфе рассмотрены всевозможные взаимно исключающие случаи относительно сравнительной величины двух дуг одного радиуса, причем получились взаимно исключающие выводы относительно сравнительной величины хорд и расстояний их от центра, то обратные предложения должны быть верны, в. именно:

В одном круге или е равных кругах:

1) равные хорды одинакова удалены от центра и стягивают равные дуги;

2) хорды, одинаково удаленные от центра, равны и стягивают равные дуги;

3) из двух неравных хорд большая ближе к центру и стягивает большую дугу;

4) из двух хорд, неодинаково удаленных от центра, которая ближе к центру, больше и стягивает большую дугу.

Эти предложения легко доказываются от противного. Например, для доказательства первого из них рассуждаем так: если бы данные хорды стягивали неравные дуги, то, согласно прямой теореме, они были бы не равны, что противоречит условию; значит, равные хорды должны стягивать равные дуги; а если дуги равны, то, согласно прямой теореме, стягивающие их хорды одинаково удалены от центра.

Теорема. Диаметр есть наибольшая из хорд.

Если соединим с центром О концы какой-нибудь хорды, не проходящей через центр, например хорды АВ (рис. 3) то получим треугольник АОВ, в котором одна сторона есть эта хорда, а две другие — радиусы, Но в треугольнике каждая сторона менее суммы двух других сторон; следовательно, хорда АВ менее суммы двух радиусов; тогда как всякий диаметр CD равен сумме двух радиусов. Значит, диаметр больше всякой хорды, не проходящей через центр. Но так как диаметр есть тоже хорда, то можно сказать, что диаметр есть наибольшая из хорд.

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Как уже было сказано, отрезки касательных, проведенных к окружности из одной точки, имеют одинаковую длину. Эту длину называют касательным расстоянием от точки до окружности.

Без теоремы о касательных не обходиться решение не одной задачи о вписанных окружностях, иными словами, об окружностях, касающихся сторон многоугольника.

Касательные расстояния в треугольнике.

Найдем длины отрезков, на которые стороны треугольника АВС разбиваются точками касания с вписанной в него окружностью (рис. 1,а), например касательное расстояние от точки А до окружности. Сложим стороны b и c, а затем из суммы вычтем сторону а. Учитывая равенство касательных, проведенных из одной вершины, получим 2. Итак,

где p=(a+b+c)/2 – полупериметр данного треугольника. Длина отрезков сторон, прилегающим к вершинам В и С, равны соответственно p-b и p-c.

Аналогично, для вневписанной окружности треугольника, касающейся (снаружи) стороны а (рис. 1,б), касательные расстояния от В и С равны соответственно p-c и p-b, а от вершины А — просто p.

Заметим, что эти формулы можно использовать и «в обратную сторону».

Пусть в угол ВАС вписана окружность, причем касательное расстояние от вершины угла до окружности равно p или p-a, где p – полупериметр треугольника АВС, а а=ВС. Тогда окружность касается прямой ВС (соответственно снаружи или внутри треугольника).

В самом деле, пусть, например, касательное расстояние равно p-a. Тогда наши окружности касаются сторон угла в тех же самых точках, что и вписанная окружность треугольника АВС, а значит, совпадает с ней. Следовательно, она касается прямой ВС.

Описанный четырехугольник. Из теоремы о равенстве касательных сразу получается (рис. 2,а), что

если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:

Отметим, что описанный четырехугольник обязательно выпуклый. Верно и обратное:

Если четырехугольник выпуклый и суммы его противоположных сторон равны, то в него можно вписать окружность.

Докажем это для четырехугольника, отличного от параллелограмма. Пусть какие-то две противоположные стороны четырехугольника, например AB и DC, при продолжении пересекутся в точке Е (рис. 2,б). Впишем окружность в треугольник ADE. Ее касательное расстояние te до точки E выражается формулой

Но по условию суммы противоположных сторон четырехугольника равны, а значит, AD+BC=AB+CD, или AD=AB+CD-BC. Подставив это значение в выражение для te, получим

а это – полупериметр треугольника BCE. Из доказанного выше условия касания следует, что наша окружность касается BC.

Если прямая проходит через центр окружности

Если прямая проходит через центр окружности

Две касательные, проведённые к окружности из точки вне её, равны и образуют равные углы с прямой, соединяющей эту точку с центром, что следует из равенства прямоугольных треугольников АОВ и АОВ1

📸 Видео

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Окружность и прямая: варианты взаимного расположенияСкачать

Окружность и прямая: варианты взаимного расположения

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Пирамиды, в которых высота проходит через центр вписанной в основание окружностиСкачать

Пирамиды,  в которых высота проходит через центр вписанной в основание окружности

9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Окружность с центром на стороне AС треугольника ABC проходит через вершину С и касается прямой AB вСкачать

Окружность с центром на стороне AС треугольника ABC проходит через вершину С  и касается прямой AB в

Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

27 Где на прямой Эйлера лежит центр окружности девяти точек?Скачать

27 Где на прямой Эйлера лежит центр окружности девяти точек?

Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.Скачать

Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.

2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB
Поделиться или сохранить к себе: