Если прямая параллельна прямой которая находится в некоторой плоскости то

Взаимное расположение прямой и плоскости.

Возможны три варианта взаимного расположения прямой и плоскости.

Прямая может быть параллельна плоскости, пересекать или принадлежать плоскости.

Параллельность прямой и плоскости.

Прямая и плоскость параллельны, если они не имеют общих точек.

Признак параллельности прямой и плоскости.
Если прямая a параллельна некоторой прямой, лежащей в плоскости, то прямая a параллельна этой плоскости.

Пересечение прямой и плоскости.

Прямая и плоскость пересекаются, если они имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости.

Важным частным случаем пересечения прямой и плоскости является их перпендикулярность.

Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

Признак перпендикулярности прямой и плоскости.
Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость.

Принадлежность прямой плоскости.

Прямая принадлежит плоскости, если каждая точка прямой принадлежит плоскости.

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Прямая линия. Параллельные прямые. Основные понятия.

Две прямые называются параллельными, если, находясь в одной плоскости, они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || СE

Возможность существования таких прямых доказывается теоремой.

Теорема.

Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой.

Если прямая параллельна прямой которая находится в некоторой плоскости то

Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB. Опустим на AB из точки С перпендикуляр СD и затем проведем СE ^ СD, что возможно. Прямая CE параллельна AB.

Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M. Тогда из точки M к прямой СD мы имели бы два различных перпендикуляра MD и , что невозможно. Значит, CE не может пересечься с AB, т.е. СE параллельна AB.

Следствие.

Аксиома параллельных линий.

Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.

Если прямая параллельна прямой которая находится в некоторой плоскости то

Так, если прямая СD, проведенная через точку С параллельна прямой AB, то всякая другая прямая СE, проведенная через ту же точку С, не может быть параллельна AB, т.е. она при продолжении пересечется с AB.

Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).

Следствия.

1. Если прямая (СE) пересекается с одной из параллельных (СВ), то она пересекается и с другой (AB), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB, что невозможно.

2. Если каждая из двух прямых (A и B) параллельны одной и той же третьей прямой (С), то они параллельны между собой.

Действительно, если предположить, что A и B пересекаются в некоторой точке M, то тогда через эту точку проходили бы две различные прямые, параллельные С, что невозможно.

Теорема.

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной.

Если прямая параллельна прямой которая находится в некоторой плоскости то

Перпендикуляр EF, пересекаясь с AB, непременно пересечет и СD. Пусть точка пересечения будет H.

Предположим теперь, что СD не перпендикулярна к EH. Тогда какая-нибудь другая прямая, например HK, будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB: одна СD, по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH.

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №4. Параллельность прямых, прямой и плоскости

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных прямых;
  2. Теорема о единственности прямой, параллельной данной, проходящей через данную точку;
  3. лемма о двух параллельных прямых;
  4. теорему о параллельности трех прямых;
  5. определение параллельных прямой и плоскости;
  6. признаком параллельности прямой и плоскости.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые − прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл.– М.: Просвещение, 2014. 255 с.

Зив Б. Г. Дидактические материалы. Геометрия 10 кл. – М.: Просвещение, 2014. 96 с.

Глазков Ю. А., Юдина И. И., Бутузов В.Ф. Рабочая тетрадь. Геометрия 10 кл.-М.: Просвещение, 2013. 65 с.

Теоретический материал для самостоятельного изучения

Геометрия, которую мы изучаем, называется евклидовой, по имени древнегреческого ученого Евклида (3 век до нашей эры), который создал целый труд по математике под названием «Начала». В данной книге есть раздел о параллельных прямых.

В советском энциклопедическом словаре слово «параллельность» переводится с греческого языка, как «идущий рядом».

В средние века параллельность обозначалась знаком «=». В 1557 году Р. Рекордом для обозначения равенства был введен знак «=», которым мы пользуемся сейчас, а параллельность стали обозначать «║».

В книге «Начала» определение параллельных прямых звучало так «прямые, лежащие в одной плоскости и будучи бесконечно продолжены в обе стороны, ни с той, ни с другой стороны не пересекаются». Это определение почти не отличается от современного.

В области параллельных прямых работало очень много учёных: Н.И. Лобаческий (18-19 век); Аббас ал-Джаухари (работал в Багдаде в 9 веке); Фадл ал-Найризи (Богдад 10 век); Герард (Италия 12 век); Иоганн Генрих Ламберт (Берлин) и многие другие.

Каково расположение 2-х прямых на плоскости (совпадают, пересекаются, параллельны) (рис. 1 а, б, в).

Если прямая параллельна прямой которая находится в некоторой плоскости то

Если прямая параллельна прямой которая находится в некоторой плоскости тоПерейдем к взаимному расположению 2-х прямых в пространстве. Как и в планиметрии, две различные прямые в пространстве либо пересекаются в одной точке, либо не пересекаются (не имеют общих точек). Но второй случай допускает две возможности: прямые лежат в одной плоскости (параллельны) или прямые не лежат в одной плоскости. В первом случае они параллельны, а во втором — такие прямые называются скрещивающимися.

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Если прямая параллельна прямой которая находится в некоторой плоскости тоПроиллюстрировать данные определения наглядно нам поможет куб.

Давайте укажем некоторые пары параллельных прямых:

AB||A₁B₁; AB|| CD; A₁B₁||C₁D₁; CD||C₁D₁; AD||A₁D₁; BC||B₁D₁; AD||BC; A₁D₁||B₁C₁.

А теперь рассмотрим некоторые пары скрещивающихся прямых, как мы отметили, они не должны лежать в одной плоскости:

AB A₁D₁; AB B₁C₁; CD A₁D₁; CD B₁C₁; BC C₁D₁; BC A₁B₁; AB B₁C₁; AB A₁D₁.

Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

  1. М и а задают плоскость α
  2. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т.е. в плоскости α.
  3. В плоскости α через точку М проходит прямая, параллельная прямой а, и притом только одна- это нам известно из кураса планиметрии.
  4. На чертеже эта прямая обозначена буквой b .
  5. Следовательно, b-единственная прямая, проходящая через точку М паралельно прямой а.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Аналогично определяется праралельность отрезка и прямой, а так же паралельность двух лучей.

Если прямая параллельна прямой которая находится в некоторой плоскости тоЛемма. Если одна из двух паралельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

  1. Рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M(а рис.).
  2. Мы знаем, что через параллельные прямые a и b можно провести только одну плоскость β. (теорема)
  1. Так как точка M находится на прямой b, то M также принадлежит плоскости β (б рис.). Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая p, которая является прямой пересечения этих плоскостей (4 аксиома).
  1. Прямые a, b и c находятся в плоскости β.

Если в этой плоскости одна из параллельных прямых b пересекает прямую p, то вторая прямая a тоже пересекает p.

  1. Точку пересечения прямых a и p обозначим за N.

Так как точка N находится на прямой p, то N находится в плоскости α и является единственной общей точкой прямой a и плоскости α.

  1. Значит, прямая a пересекает плоскость α в точке N.

Нам известно из курса планиметрии, что если три прямые лежат в одной плоскости и две из них параллельны третьей, то эти две прямые параллельны. Похожее утверждение имеет место и для трех прямых в пространстве.

Теорема. Если две прямые параллельны третьей прямой, то они параллельны.

Если прямая параллельна прямой которая находится в некоторой плоскости тоДоказательство:

Выберем точку M на прямой b.

Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (Через прямую и не лежащую на ней точку можно провести только одну плоскость).

Возможны два случая:

1) прямая b пересекает плоскость α или 2) прямая b находится в плоскости α.

Пусть прямая b пересекает плоскость α.

Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость. Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным. Значит, прямая b находится в плоскости α.

Теперь нужно доказать, что прямые a и b параллельны.

Пусть у прямых a и b есть общая точка L.

Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.

Так как прямые a и b находятся в одной плоскости α и у них нет общих точек, то они параллельны.

Если две точки прямой лежат в данной плоскости, то по аксиоме А₂ вся прямая лежит в этой плоскости. Из этого следует, что возможны три расположения прямой и плоскости:

Если прямая параллельна прямой которая находится в некоторой плоскости то

Если прямая параллельна прямой которая находится в некоторой плоскости то

Если прямая параллельна прямой которая находится в некоторой плоскости то

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Наглядный пример, который дает представление о прямой, параллельной плоскости- это линия пересечения стены и потолка-она параллельна плоскости пола.

Если прямая параллельна прямой которая находится в некоторой плоскости то

Теорема (Признак параллельности прямой и плоскости)
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой на этой плоскости, то эта прямая параллельна данной плоскости.

Если прямая параллельна прямой которая находится в некоторой плоскости то

Доказательство:
Доказательство проведем от противного. Пусть a не параллельна плоскости α, тогда прямая a пересекает плоскость в некоторой точке A. Причем A не находится на b, так как a∥b. Согласно признаку скрещивающихся прямых, прямые a и b скрещивающиеся.

Мы пришли к противоречию. Так как согласно данной информации a∥b, они не могут быть скрещивающимися. Значит, прямая a должна быть параллельна плоскости α.Если прямая параллельна прямой которая находится в некоторой плоскости то

Существует еще два утверждения, которые используются при решении задач:

  1. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
  2. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо тоже параллельна данной плоскости, либо лежит в этой плоскости.

Примеры и разбор решения заданий тренировочного модуля

Тип задания: Ввод с клавиатуры пропущенных элементов в тексте

Если прямая параллельна прямой которая находится в некоторой плоскости то

Дано: в ∆ АВС КМ − средняя линия, КМ=5; ACFE- параллелограмм.

Решение: Т.к. КМ − средняя линия, то АС= 2·КМ, то АС=2·7=10

Т.к. ACFE − параллелограмм, то АС=EF=10

Тип задания: Единичный / множественный выбор

Точка М не лежит в плоскости ромба ABCD. На отрезке АМ выбрана точка Е так, что MЕ:ЕА=1:3. Точка F – точка пересечения прямой МВ с плоскостью CDE. Найдите АВ, если AD= 8 cм.

MC Если прямая параллельна прямой которая находится в некоторой плоскости то

Т.к. AD||BC||FK, следовательно, треугольники MFK и MBC- подобны (по трем углам). Значит

Если прямая параллельна прямой которая находится в некоторой плоскости то. BC=AD= 8 см; Если прямая параллельна прямой которая находится в некоторой плоскости то

🌟 Видео

10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

6. Параллельность прямой и плоскостиСкачать

6. Параллельность прямой и плоскости

Параллельность прямой к плоскостиСкачать

Параллельность прямой к плоскости

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ и ПЛОСКОСТИ 10 11 класс стереометрияСкачать

ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ и ПЛОСКОСТИ 10 11 класс стереометрия

№25. Докажите, что если данная прямая параллельна прямой, по которой пересекаютсяСкачать

№25. Докажите, что если данная прямая параллельна прямой, по которой пересекаются

10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

10 класс, 17 урок, Признак перпендикулярности прямой и плоскостиСкачать

10 класс, 17 урок, Признак перпендикулярности прямой и плоскости

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | УмскулСкачать

Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | Умскул

10.2 Параллельность прямых, прямой и плоскостиСкачать

10.2  Параллельность прямых, прямой и плоскости

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

№55. Докажите, что если прямая а пересекает плоскость α, то она пересекает также любуюСкачать

№55. Докажите, что если прямая а пересекает плоскость α, то она пересекает также любую

Параллельность прямых, прямой и плоскостиСкачать

Параллельность прямых, прямой и плоскости

10 класс, 15 урок, Перпендикулярные прямые в пространствеСкачать

10 класс, 15 урок, Перпендикулярные прямые в пространстве

10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости
Поделиться или сохранить к себе:
    1. прямая лежит в плоскости
    1. прямая и плоскость имеют только одну общую точку, т.е. пересекаются
    1. прямая и плоскость не имеют ни одной общей точки