Если окружность вписана в 4 угольник

Окружность, вписанная в четырехугольник

Определение 1. Окружность называют вписанным в четырехугольник, если окружность касается всех сторон четырехугольника.

На рисунке 1 окружность вписан в четырехугольник ABCD. В этом случае говорят также, что четырехугольник описан около окружности.

Если окружность вписана в 4 угольник

Теорема 1. Если окружность вписан в четырехугольник, то сумма противолежащих сторон четырехугольника равны.

Доказательство. Пусть окружность ABCD вписан в четырехугольник (Рис.2). Докажем, что ( small AB+CD=AD+BC ).

Если окружность вписана в 4 угольник

Точки M, N, Q, P − точки касания окружности со сторонами четырехугольника. Так как отрезки касательных, проведенных к окружности через одну точку, равны (статья Касательная к окружности теорема 2), то

( small AM=AQ=a, ) ( small BM=BN=b, ) ( small CN=CP=c, ) ( small DQ=DP=d )
( small AB+CD ) ( small=AM+BM+CP+DP ) ( small =a+b+c+d, )(1)
( small AD+BC) ( small=AQ+DQ+BN+CN) ( small=a+d+b+c. )(2)

Из равенств (1) и (2), следует:

( small AB+CD=AD+BC. ) Если окружность вписана в 4 угольник

Теорема 2. Если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.

Доказательство. Пусть задан выпуклый четырехугольник ABCD и пусть ( small AB+CD=AD+BC. ) (Рис.3). Докажем, что в него можно вписать окружность.

Если окружность вписана в 4 угольник

Проведем биссектрисы углов A и B четырехугольника ABCD. Точку их пересечения обозначим буквой O. Тогда точка O равноудалена от сторон AB, BC, AD. Следовательно существует окружность с центром в точке O, которая касается этих трех сторон.

Пусть эта окружность не касается стороны CD. Тогда возможны два случая.

Случай 1. Сторона CD не имеет общих точек с построенной окружностью.

Проведем касательную C1D1 к окружности, параллельно стороне CD четырехугольника.

Тогда окружность с центром O вписан в четырехугольник ABC1D1. Следовательно, по теореме 1, имеем:

( small AB+C_1D_1=AD_1+BC_1. )(3)

Но по условию данной теоремы:

( small AB+CD=AD+BC. )(4)

Вычтем из равенства (4) равенство (3):

( small CD-C_1D_1) (small=AD-AD_1+BC-BC_1 )
( small CD-C_1D_1=DD_1+CC_1 )
( small CD=DD_1+CC_1+C_1D_1)

Получили, что в четырехугольнике CC1D1D длина одной стороны равна сумме длин трех остальных сторон, что невозможно (см. задачу 1 статьи Четырехугольник).

Таким образом сторона CD должна иметь общие точки с рассматриваемой окружностью.

Случай 2. Сторона CD имеет две общие точки с построенной окружностью (Рис.4).

Если окружность вписана в 4 угольник

Аналогичными рассуждениями можно показать, что сторона CD не может иметь две общие точки с построенной окружностью.

Следовательно, предполагая, что построенная окружность не касается стороны CD, мы пришли к противоречию. Таким образом, если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.Если окружность вписана в 4 угольник

Если в четырехугольник вписан окружность, то существует точка, равноудаленная от всех сторон четырехугольника. Эта точка является центром вписанной в четырехугольник окружности. Для нахождения этой точки достаточно найти точку пересечениия биссектрис двух соседних углов данного четырехугольника.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанная в четырехугольник окружность

Описанный четырехугольник — это четырехугольник, все стороны которого касаются окружности. При этом окружность называется вписанной в четырехугольник.

Какими свойствами обладает вписанная в четырехугольник окружность? Когда в четырехугольник можно вписать окружность? Где находится центр вписанной окружности?

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.

Если окружность вписана в 4 угольникВ четырехугольник ABCD можно вписать окружность, если

И обратно, если суммы противоположных сторон четырехугольника равны:

то в четырехугольник ABCD можно вписать окружность.

Центр вписанной в четырехугольник окружности — точка пересечения его биссектрис.

Если окружность вписана в 4 угольникO — точка пересечения биссектрис четырехугольника ABCD.

AO, BO, CO, DO — биссектрисы углов четырехугольника ABCD,

то есть ∠BAO=∠DAO, ∠ABO=∠CBO и т.д.

3. Точки касания вписанной окружности, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины.

Если окружность вписана в 4 угольникAM=AN,

Если окружность вписана в 4 угольник

Если окружность вписана в 4 угольник

Если окружность вписана в 4 угольник

Если окружность вписана в 4 угольник

Если окружность вписана в 4 угольник

5. Площадь четырехугольника связана с радиусом вписанной в него окружности формулой

Если окружность вписана в 4 угольник

где p — полупериметр четырехугольника.

Так как суммы противолежащих сторон описанного четырехугольника равны, полупериметр равен любой из пар сумм противолежащих сторон.

Например, для четырехугольника ABCD p=AD+BC или p=AB+CD и

Если окружность вписана в 4 угольник

Если окружность вписана в 4 угольник

Соответственно, радиус вписанной в четырехугольник окружности равен

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Четырехугольники, вписанные в окружность. Теорема Птолемея

Если окружность вписана в 4 угольникВписанные четырехугольники и их свойства
Если окружность вписана в 4 угольникТеорема Птолемея

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Если окружность вписана в 4 угольник

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Если окружность вписана в 4 угольник

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Если окружность вписана в 4 угольник
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Если окружность вписана в 4 угольник

ФигураРисунокСвойство
Окружность, описанная около параллелограммаЕсли окружность вписана в 4 угольникОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаЕсли окружность вписана в 4 угольникОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииЕсли окружность вписана в 4 угольникОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаЕсли окружность вписана в 4 угольникОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникЕсли окружность вписана в 4 угольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Если окружность вписана в 4 угольник
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Если окружность вписана в 4 угольник

Окружность, описанная около параллелограмма
Если окружность вписана в 4 угольникОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Если окружность вписана в 4 угольникОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Если окружность вписана в 4 угольникОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Если окружность вписана в 4 угольникОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Если окружность вписана в 4 угольник
Окружность, описанная около параллелограмма
Если окружность вписана в 4 угольник

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаЕсли окружность вписана в 4 угольник

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииЕсли окружность вписана в 4 угольник

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаЕсли окружность вписана в 4 угольник

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникЕсли окружность вписана в 4 угольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Если окружность вписана в 4 угольник

Если окружность вписана в 4 угольник

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Если окружность вписана в 4 угольник

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Если окружность вписана в 4 угольник

Докажем, что справедливо равенство:

Если окружность вписана в 4 угольник

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Если окружность вписана в 4 угольник

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Если окружность вписана в 4 угольник

откуда вытекает равенство:

Если окружность вписана в 4 угольник(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

💥 Видео

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Окружность, вписанная в четырехугольникСкачать

Окружность, вписанная в четырехугольник

В четырехугольник ABCD вписана окружность, AB = 10, BC = 11 и CD = 15. Найдите четвертую сторону.Скачать

В четырехугольник ABCD вписана окружность, AB = 10, BC = 11 и CD = 15. Найдите четвертую сторону.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Если в четырёхугольник вписана окружность #огэ #огэ #математикаСкачать

Если в четырёхугольник вписана окружность #огэ #огэ #математика

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

вписанный и описанный четырехугольникСкачать

вписанный и описанный четырехугольник

Окружность и четырехугольникСкачать

Окружность и четырехугольник

Геометрия 11 класс. Вписанный четырехугольникСкачать

Геометрия 11 класс. Вписанный четырехугольник

Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭСкачать

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭ
Поделиться или сохранить к себе: