Проекцией прямой, которая не перпендикулярна плоскости проекций, является прямая. Её положение определяется двумя точками, следовательно, для того чтобы построить проекцию прямой, достаточно построить проекции двух её точек.
Рисунок 8
а) Прямой общего положения называется прямая, которая не параллельна и не перпендикулярна ни одной из плоскости проекций. Пример такой прямой изображён на рисунке 8. Комплексный чертёж этой прямой будет выглядеть следующим образом.
Рисунок 9
б) Прямые частного положения – это прямые, занимающие по отношению к плоскостям проекций особое положение, т.е. либо параллельные, либо перпендикулярные плоскостям проекций.
Первый подкласс прямых частного положения – прямые уровня. Это прямые, параллельные какой-либо плоскости проекций.
Горизонталь – прямая параллельная горизонтальной плоскости П1. Комплексный чертёж такой прямой изображён на рисунке 10.
Рисунок 10
Фронтальная проекция горизонтали всегда параллельна прямой Х, а угол между осью Х и горизонтальной проекцией горизонтали составляет угол между прямой и фронтальной плоскостью проекций. Символическая запись: h // П1; α = Ð h П2.
Фронталь – прямая параллельная фронтальной плоскости П2. Комплексный чертёж фронтали изображён на рисунке 11.
Рисунок 11
Горизонтальная проекция фронтали параллельна оси Х, а угол β — угол наклона фронтали к горизонтальной плоскости проекций; f2 // П2, β= Ð f1 П1.
Профильная прямая – это прямая, параллельная профильной плоскости П 3 . Комплексный чертёж профильной прямой изображён на рисунке 12. Горизонтальная и фронтальная проекции профильной прямой перпендикулярны оси Х, а углы α и β — соответственно, углы наклона прямой к плоскостям П 1 и П2.
Рисунок 12.
Истинная величина прямых уровня или, так называемая натуральная величина, отображена на тех плоскостях, которым параллельны эти прямые.
Второй подкласс прямых частного положения – проецирующие прямые. Это прямые, перпендикулярные какой-либо плоскости проекций. К таким прямым относятся: горизонтально–проецирующая, фронтально-проецирующая и профильно-проецирующая прямые.
Их комплексные чертежи изображены соответственно на рисунке 13 (а, б, в).
Рисунок 13
Натуральная величина горизонтально-проецирующей прямой – её фронтальная проекция, фронтально-проецирующей прямой – её горизонтальная проекция, а профильно-проецирующей прямой – её горизонтальная и фронтальная проекции.
а) три точки, не лежащие на одной прямой;
Рисунок 14
б) прямая и точка, не лежащая на ней;
Рисунок 15
в) две параллельные прямые;
Рисунок 16
г) две пересекающиеся прямые;
Рисунок 17
д) плоская фигура (многоугольник, круг и т.д.).
Плоскость общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций.
Рисунок 18
Плоскости частного положения аналогично прямой подразделяются на плоскости уровня и проецирующие плоскости. На рисунке 19 (а,б,в) изображены, соответственно, горизонтальная, фронтальная и профильная плоскости. Причём горизонтальная плоскость задана двумя параллельными прямыми, фронтальная и профильная плоскости – двумя пересекающимися прямыми.
Рисунок 19
На рисунке 20 (а, б, в) показаны проецирующие плоскости. Горизонтально-проецирующая (рис. 20а) задана треугольником, фронтально-проецирующая (рис. 20б) — параллельными прямыми и профильно-проецирующая (рис. 20в) – пересекающимися прямыми.
Рисунок 20
1. Как образуется комплексный чертеж прямой линии?
2. Прямые какого положения вы знаете?
3. Назовите прямые уровня.
4. Как называется прямая, проекцией которой на горизонтальной плоскости будет точка?
5. Перечислите способы задания плоскости.
6. Дайте определение плоскости общего положения.
7. Какие бывают плоскости частного положения? Как они называются и как выглядят на комплексном чертеже?
© ФГБОУ ВПО Красноярский государственный аграрный университет
- Лекция 2. Ортогональные проекции прямой
- 2.1. Задание прямой на эпюре
- 2.2. Прямые частного положения
- 2.3. Метод прямоугольного треугольника
- 2.4. Точка и прямая
- Упражнение
- Упражнение
- 2.5. Следы прямой
- 2.6. Взаимное расположение прямых
- 2.7. Проекции плоских углов
- Теорема о проецировании прямого угла в частном случае
- 2.8. Задачи для самостоятельного решения
- Проецирующие прямые
- 🎦 Видео
Видео:Проецирование прямой общего положенияСкачать
Лекция 2. Ортогональные проекции прямой
Видео:Лекция 3. Прямая линияСкачать
2.1. Задание прямой на эпюре
Прямая на чертеже может быть задана изображением прямой, точкой и направлением, отрезком прямой и двумя пересекающимися плоскостями.
а б
Рисунок 2.1 – Проекции прямой
Прямоугольной проекцией отрезка в общем случае является отрезок (второе свойство центрального и параллельного проецирования). На чертеже прямая m (Рисунок 2.1, а) и отрезок АВ (Рисунок 2.1, б) произвольно наклонены к плоскостям проекций. Такие прямые называются прямыми общего положения.
Прямая, не параллельная ни одной из плоскостей проекций, называется прямой общего положения .
Длина прямоугольной параллельной проекции отрезка общего положения всегда меньше длины самого отрезка.
Видео:3. Прямая. Проекции прямой линииСкачать
2.2. Прямые частного положения
Прямая, параллельная или перпендикулярная какой-либо плоскости проекций, называется прямой частного положения .
Прямые, параллельные плоскостям проекций, называются прямыми уровня .
Прямая, параллельная горизонтальной плоскости проекций, называется горизонтальной прямой или горизонталью (Рисунок 2.2).
Рисунок 2.2 – Эпюр горизонтали
Если отрезок параллелен плоскости проекций π1, то его фронтальная проекция А2В2 параллельна оси проекций π1/π2, а горизонтальная проекция отрезка А1В1 определяет истинную величину АВ:
Прямая, параллельная фронтальной плоскости проекций, называется фронтальной прямой или фронталью (Рисунок 2.3).
Рисунок 2.3 – Эпюр фронтали
Если отрезок параллелен плоскости проекций π2, то его горизонтальная проекция параллельна оси проекций π2/π1, а фронтальная проекция отрезка C2D2 определяет истинную величину CD.
Прямая GH, параллельная профильной плоскости проекций, называется профильной прямой (Рисунок 2.4).
Прямые, перпендикулярные плоскостям проекций, называются проецирующими .
Прямая EF, перпендикулярная горизонтальной плоскости проекций, называется горизонтально-проецирующей (Рисунок 2.4).
Прямая KL, перпендикулярная фронтальной плоскости проекций, называется фронтально-проецирующей (Рисунок 2.4).
Прямая MN, перпендикулярная профильной плоскости проекций, называется профильно-проецирующей (Рисунок 2.4).
Рисунок 2.4 – Эпюры проецирующих прямых (EF, KL, MN) и профильной прямой GH
Видео:Лекция 1. Классификация прямых линий.Скачать
2.3. Метод прямоугольного треугольника
Метод прямоугольного треугольника позволяет по эпюру отрезка прямой общего положения определить его истинную величину.
Рассмотрим положение отрезка АВ относительно горизонтальной плоскости проекций π1 (Рисунок 2.5).
Рисунок 2.5 – Определение истинной величины отрезка общего положения
На рисунке 2.5, а:
АА1 – расстояние от точки А до плоскости проекций π1;
ВВ1 – расстояние от точки В до плоскости проекций π1;
ΔАКВ – прямоугольный треугольник, в котором:
ВК=ВВ1–АА1=Δ1 – второй катет, равный разности расстояний от концов отрезка АВ до плоскости π1 (то есть, разности координат Z точек А и В);
АВ – гипотенуза ΔАКВ – истинная величина.
При известных координатах концов отрезка общего положения можно на эпюре определить его истинную величину (Рисунок 2.5, б) на любой из плоскостей проекций.
Рисунок 2.6 – Определение истинной длины и угла наклона отрезка AB к плоскости проекций π2
Видео:Следы прямой Взаимное положение двух прямыхСкачать
2.4. Точка и прямая
Если точка принадлежит прямой, то её проекции:
- Принадлежат одноимённым проекциям данной прямой;
- Лежат на одной линии связи.
Рисунок 2.7 – Принадлежность точки прямой
Точка С принадлежит отрезку АВ (Рисунок 2.7), так как:
Если точка делит отрезок в каком-либо отношении, то проекции этой точки делят одноименные проекции данного отрезка в том же отношении:
Видео:Параллельность прямой к плоскостиСкачать
Упражнение
Разделить точкой К отрезок EF в соотношении EK:KF=1:3 (Рисунок 2.8)
Рисунок 2.8 – Деление отрезка в заданном отношении
Решение:
- Проведём произвольную прямую из любого конца любой проекции отрезка, например, Е2.
- Отложим на этой прямой от точки Е2 равные отрезки, количество которых равно сумме чисел, составляющих дробь (в нашем примере 1+3=4).
- Соединим последнюю точку 4 с другим концом фронтальной проекции отрезка – точкой F2.
- Из точки 1 проведём прямую, параллельную прямой (4—F2) до пересечения с проекцией E2F2, таким образом будет найдена фронтальная проекция искомой точки К2.
- Горизонтальную проекцию точки К1 получим путём построения линии проекционной связи до пересечения её с горизонтальной проекцией отрезка.
Видео:Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать
Упражнение
Определить принадлежность точки С отрезку прямой АВ (Рисунок 2.9).
Рисунок 2.9а – Решение упражнения 2. Способ 1.
Рисунок 2.9б – Решение упражнения 2. Способ 2.
Ответ: точка С не принадлежит отрезку АВ, так как не выполняется условие принадлежности точки прямой.
Видео:Проецирование прямых частного положенияСкачать
2.5. Следы прямой
След прямой – точка пересечения прямой с плоскостью проекций.
Прямая общего положения в общем случае может быть три следа:
- горизонтальный след M1– точка пересечения прямой с горизонтальной плоскостью проекций π1;
- фронтальный след N2– точка пересечения прямой с фронтальной плоскостью проекций π2;
- профильный след L3 – точка пересечения прямой с профильной плоскостью проекций π3.
След прямой является точкой частного положения, поскольку он принадлежит плоскости проекций, следовательно, след прямой всегда совпадает с одной из своих проекций:
- горизонтальный след совпадает со своей горизонтальной проекцией M≡M1,
- фронтальный – с фронтальной проекцией N≡N2,
- профильный – с профильной проекцией L≡L3 (Рисунок 2.10).
Рисунок 2.10 – Построение следов отрезка прямой АВ
Построим следы отрезка АВ с плоскостями проекций (Рисунки 2.10, 2.11).
Для построения горизонтального следа прямой АB необходимо:
- Продолжить фронтальную проекцию прямой АB до пересечения с осью X, точка пересечения М2 является фронтальной проекцией горизонтального следа;
- Из точки М2 провести линию проекционной связи до его пересечения с горизонтальной проекцией прямой АB или её продолжением. Точка пересечения М1 и будет являться горизонтальной проекцией горизонтального следа, которая совпадает с самим следом М.
Чтобы построить фронтальный след отрезка АB прямой, необходимо:
- Продолжить горизонтальную проекцию прямой АB до пересечения с осью X, точка пересечения N1 является горизонтальной проекцией фронтального следа;
- Из точки N1 провести линию проекционной связи до его пересечения с фронтальной проекцией прямой АB или ее продолжением. Точка пересечения N2 и будет являться фронтальной проекцией фронтального следа, которая совпадает с самим следом N.
Ниже приводим алгоритм построения следов отрезка прямой АВ:
Рисунок 2.11 – Эпюр построения следов отрезка прямой АВ
Прямая, параллельная одной из плоскостей проекций, не имеет следа на плоскости, которой она параллельна, и пересекает только две плоскости. Прямая, параллельная двум плоскостям проекций (проецирующая прямая), имеет только один след, совпадающий с проекцией прямой на плоскость, к которой она перпендикулярна.
Видео:Частное положение точек. Точки принадлежащие к плоскостям проекции.Скачать
2.6. Взаимное расположение прямых
Две прямые в пространстве могут быть:
- параллельными;
- пересекающимися;
- скрещивающимися.
Параллельные прямые – прямые, пересекающиеся в несобственной точке.
Если прямые в пространстве параллельны, то их ортогональные проекции взаимно параллельны, или сливаются, или представляют собой точки, на одной из плоскостей проекций (Рисунок 2.12).
Рисунок 2.12 – Параллельные прямые
Пересекающиеся прямые – прямые, имеющие одну общую точку.
Если прямые в пространстве пересекаются, то на чертеже одноименные проекции прямых пересекаются, при этом проекции точки пересечения прямых лежат на одной линии проекционной связи и делят соответствующие проекции отрезков прямых в равных отношениях (Рисунок 2.13).
Рисунок 2.13 – Пересекающиеся прямые
Скрещивающиеся прямые – прямые, не имеющие общих точек и не удовлетворяющие признакам параллельных и пересекающихся прямых (Рисунок 2.14).
Рисунок 2.14 — Скрещивающиеся прямые
Видео:Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать
2.7. Проекции плоских углов
Угол между двумя пересекающимися прямыми проецируется в истинную величину, если плоскость этого угла параллельна плоскости проекций.
Рисунок 2.15
По проекциям (Рисунок 2.15) нельзя судить о величине угла между двумя прямыми. На чертежах видно, что острый угол может проецироваться в виде тупого, а тупой – в виде острого.
Видео:Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигурыСкачать
Теорема о проецировании прямого угла в частном случае
Теорема . Если одна из сторон прямого угла параллельна какой-либо плоскости, а другая – этой плоскости не перпендикулярна, то на эту плоскость прямой угол проецируется в виде прямого угла (Рисунок 2.16, а и б).
Обратная теорема . Если одна из двух пересекающихся прямых параллельна некоторой плоскости проекций и проекции этих прямых на эту же плоскость пересекаются под прямым углом, то в пространстве эти прямые взаимно перпендикулярны.
Рисунок 2.16 – Проецирование прямого угла
Дано: две пересекающиеся под прямым углом прямые АВ ⊥ ВС,
Видео:Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать
2.8. Задачи для самостоятельного решения
1. Построить отрезок прямой АВ // π1, равный 35 мм и наклонённый к π2 под углом 25° (Рисунок 2.17).
Рисунок 2.17
2. Построить отрезок прямой CD по координатам его концов С (20; 15; 30), D (70; 40; 15) и определить истинную величину отрезка и углы наклона его к плоскостям проекций π2 и π1.
3. Постройте проекции отрезков частного положения, расположенных под углом 30° к плоскости проекций π1 и 45° — к плоскости проекций π2.
4. Определите взаимное положение прямых и постройте пересечение прямых АВ и CD прямой EF//π2/π1 (Рисунок 2.18).
Видео:Проецирование точки на 3 плоскости проекцийСкачать
Проецирующие прямые
Проецирующие прямые — прямые перпендикулярные одной из плоскостей проекций. Проекцией проецирующей прямой на плоскость проекций, к которой она перпендикулярна, является точка (след прямой). Проецирующие прямые подразделяют на три вида. Горизонтально проецирующие прямые — прямые перпендикулярные горизонтальной плоскости проекции.
Такие прямые проецируются на плоскость H в точку. Их фронтальные и профильные проекции параллельны оси z. a⊥H a` — точка, a» и a»` — прямые ║ z.
Фронтально проецирующие прямые — прямые перпендикулярные фронтальной плоскости проекции.
Эти прямые проецируются на плоскость V в точку, а их горизонтальные и профильные проекции параллельны оси y. b⊥V b» — точка, b` и b»` — прямые ║ y.
Профильно проецирующие прямые — прямые, перпендикулярные профильной плоскости проекции.
Проекциями таких прямых будут: на плоскость W — точка, на горизонтальной и фронтальной плоскостях прямые, параллельные оси x. c⊥W тогда: — c»` — точка, — c` и c» — прямые ║ x.
🎦 Видео
Проекция точки на плоскость, проекция прямой на плоскость. Параллельные прямые.Скачать
Лекция 4. ПлоскостьСкачать
Построение параллельной плоскости на расстояние 30 мм.Скачать
Лекция №4 Чертеж прямой. Следы прямой. Прямые общего и частного положения. Взаимное положение прямыхСкачать
Провести горизонтальную прямую через точку и пересекающую заданный отрезок. Начертательная геометрияСкачать
Следы прямойСкачать
Лекция №2. ПрямаяСкачать