Сколько окружностей можно вписать в любой треугольник

Вписанная окружность

Сколько окружностей можно вписать в любой треугольник

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Сколько окружностей можно вписать в любой треугольник
    • Четырехугольник
      Сколько окружностей можно вписать в любой треугольник
    • Многоугольник
      Сколько окружностей можно вписать в любой треугольник

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Сколько окружностей можно вписать в любой треугольник

    Вопрос по геометрии:

    сформулируйте и докажите теорему об окружности вписанной в треугольник? сколько окружностей можно вписать в данный треугольник?

    Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

    Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

    Ответы и объяснения 1

    Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
    Доказательство.

    Пусть ABC данный, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Δ AEO = Δ AOD по гипотенузе и катету (EO = OD – как радиус, AO – общая). Из равенства треугольников следует, что ∠ OAD = ∠ OAE. Значит AO биссектриса угла EAD. Точно также доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.

    В треугольник всегда можно вписать окружность,и при том только одну.

    Сколько окружностей можно вписать в любой треугольник

    Знаете ответ? Поделитесь им!

    Как написать хороший ответ?

    Чтобы добавить хороший ответ необходимо:

    • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
    • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
    • Писать без грамматических, орфографических и пунктуационных ошибок.

    Этого делать не стоит:

    • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
    • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
    • Использовать мат — это неуважительно по отношению к пользователям;
    • Писать в ВЕРХНЕМ РЕГИСТРЕ.
    Есть сомнения?

    Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

    Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

    Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

    Видео:В любой треугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

    В любой треугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

    Окружность, описанная около треугольника.
    Треугольник, вписанный в окружность. Теорема синусов

    Сколько окружностей можно вписать в любой треугольникСерединный перпендикуляр к отрезку
    Сколько окружностей можно вписать в любой треугольникОкружность описанная около треугольника
    Сколько окружностей можно вписать в любой треугольникСвойства описанной около треугольника окружности. Теорема синусов
    Сколько окружностей можно вписать в любой треугольникДоказательства теорем о свойствах описанной около треугольника окружности

    Сколько окружностей можно вписать в любой треугольник

    Видео:№700. Докажите, что в любой ромб можно вписать окружность.Скачать

    №700. Докажите, что в любой ромб можно вписать окружность.

    Серединный перпендикуляр к отрезку

    Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

    Сколько окружностей можно вписать в любой треугольник

    Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

    Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

    Сколько окружностей можно вписать в любой треугольник

    Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

    Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

    Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

    Сколько окружностей можно вписать в любой треугольник

    Докажем, что отрезок AE длиннее отрезка EB . Действительно,

    Сколько окружностей можно вписать в любой треугольник

    Сколько окружностей можно вписать в любой треугольник

    Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

    Сколько окружностей можно вписать в любой треугольник

    Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

    Сколько окружностей можно вписать в любой треугольник

    Сколько окружностей можно вписать в любой треугольник

    Полученное противоречие и завершает доказательство теоремы 2

    Видео:Вокруг любого треугольника можно описать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

    Вокруг любого треугольника можно описать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

    Окружность, описанная около треугольника

    Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

    Сколько окружностей можно вписать в любой треугольник

    Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Свойства описанной около треугольника окружности. Теорема синусов

    Для любого треугольника справедливы равенства (теорема синусов):

    Сколько окружностей можно вписать в любой треугольник,

    где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

    Для любого треугольника справедливо равенство:

    где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

    Для любого треугольника справедливо равенство:

    Сколько окружностей можно вписать в любой треугольник

    где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

    ФигураРисунокСвойство
    Серединные перпендикуляры
    к сторонам треугольника
    Сколько окружностей можно вписать в любой треугольникВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
    Посмотреть доказательство
    Окружность, описанная около треугольникаСколько окружностей можно вписать в любой треугольникОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
    Посмотреть доказательство
    Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
    Центр описанной около прямоугольного треугольника окружностиСколько окружностей можно вписать в любой треугольникЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
    Посмотреть доказательство
    Центр описанной около тупоугольного треугольника окружностиСколько окружностей можно вписать в любой треугольникЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
    Теорема синусовСколько окружностей можно вписать в любой треугольник
    Площадь треугольникаСколько окружностей можно вписать в любой треугольник
    Радиус описанной окружностиСколько окружностей можно вписать в любой треугольник
    Серединные перпендикуляры к сторонам треугольника
    Сколько окружностей можно вписать в любой треугольник

    Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

    Окружность, описанная около треугольникаСколько окружностей можно вписать в любой треугольник

    Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

    Центр описанной около остроугольного треугольника окружностиСколько окружностей можно вписать в любой треугольник

    Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

    Центр описанной около прямоугольного треугольника окружностиСколько окружностей можно вписать в любой треугольник

    Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

    Центр описанной около тупоугольного треугольника окружностиСколько окружностей можно вписать в любой треугольник

    Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

    Теорема синусовСколько окружностей можно вписать в любой треугольник

    Для любого треугольника справедливы равенства (теорема синусов):

    Сколько окружностей можно вписать в любой треугольник,

    где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

    Площадь треугольникаСколько окружностей можно вписать в любой треугольник

    Для любого треугольника справедливо равенство:

    где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

    Радиус описанной окружностиСколько окружностей можно вписать в любой треугольник

    Для любого треугольника справедливо равенство:

    Сколько окружностей можно вписать в любой треугольник

    где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Доказательства теорем о свойствах описанной около треугольника окружности

    Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

    Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

    Сколько окружностей можно вписать в любой треугольник

    Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

    Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

    Следовательно, справедливо равенство:

    откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

    Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

    Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

    При доказательстве теоремы 3 было получено равенство:

    из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

    Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

    Сколько окружностей можно вписать в любой треугольник

    Сколько окружностей можно вписать в любой треугольник.

    Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

    l = 2Rsin φ .(1)

    Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

    Сколько окружностей можно вписать в любой треугольник

    Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

    Формула (1) доказана.

    Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

    🎬 Видео

    Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Если в четырёхугольник можно вписать окружностьСкачать

    Если в четырёхугольник можно вписать окружность

    СДАЮ ОГЭ ПО МАТЕМАТИКЕ 2023 НА 5 ЗА ПОЛЧАСАСкачать

    СДАЮ ОГЭ ПО МАТЕМАТИКЕ 2023 НА 5 ЗА ПОЛЧАСА

    В любой четырёхугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

    В любой четырёхугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

    Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

    Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

    8 класс, 38 урок, Вписанная окружностьСкачать

    8 класс, 38 урок, Вписанная окружность

    Треугольник и окружность #shortsСкачать

    Треугольник и окружность #shorts

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)

    Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружностьСкачать

    Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружность

    Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

    Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

    Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

    Вписанная и описанная окружности | Лайфхак для запоминания

    9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

    9 класс, 22 урок, Окружность, описанная около правильного многоугольника

    Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

    Вписанная и описанная около равнобедренного треугольника,  окружность
    Поделиться или сохранить к себе: