Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Планиметрия. Страница 2

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

  • Главная
  • Репетиторы
  • Учебные материалы
  • Контакты

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Видео:Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||Скачать

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||

1.Параллельность прямых

Теорема: если две прямые параллельны третьей прямой, то они параллельны.

Доказательство. Пусть даны две прямые а и b. Допустим, что они не параллельны между собой. (Рис.1) Тогда они пересекаются в некоторой точке С. Следовательно, через точку С проходят две прямые, параллельные прямой с. А это невозможно согласно аксиоме: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Следовательно, прямые а и b не пересекаются. Они параллельны.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.1 Теорема. Параллельность прямых.

Видео:Теорема 13.1. Две прямые, перпендикулярные третьей прямой, параллельны || Геометрия 7 класс ||Скачать

Теорема 13.1. Две прямые, перпендикулярные третьей прямой, параллельны || Геометрия 7 класс ||

2.Признаки параллельности прямых

Теорема. Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180 градусов, то прямые параллельны.

Доказательство. Пусть даны две прямые a и b, которые образуют с секущей АВ внутренние накрест лежащие углы (Рис. 2 а). Допустим, что прямые a и b не параллельны. Тогда они пересекаются в одной точке С. Секущая АВ разбивает плоскость на две полуплоскости. И, следовательно, точка С лежит в одной из них и образует треугольник АВС. Сторона АС принадлежит прямой а. Сторона ВС принадлежит прямой b. (Рис. 2 б)

Отложим равный треугольник ABC1 в другой полуплоскости с вершиной С1 так, чтобы угол А треугольника АВС совпал с углом В треугольника АВС1. Так как по условию задачи сумма внутренних односторонних углов равна 180 градусов, то сторона АС1 ляжет на прямую а, ВС1 — на прямую b. Тогда точка С1 принадлежит двум прямым: а и b. Т.е. две точки С и С1 одновременно принадлежат двум прямым. А это невозможно. Следовательно прямые a и b не пересекаются, они параллельны.

8. Пример 1

Даны прямая а и точка С, не лежащая на этой прямой. Необходимо доказать, что через точку С можно провести прямую, параллельную прямой а. (Рис.8)

Доказательство:

Проведем прямую b, параллельную прямой а. Тогда, согласно аксиоме 9, (через точку, не лежащую на данной прямой, можно провести только одну прямую) проведем прямую с через точку С, параллельную прямой b.

Таким образом, получается, что прямая с параллельна прямой b, и прямая a также параллельна прямой b по построению. Следовательно, по теореме о двух прямых, параллельных третьей прямой, имеем, что две прямые a и c параллельны прямой b и, следовательно, они (прямые а и с) параллельны. Т.е. через точку С можно провести прямую, параллельную прямой а.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.8 Задача. Даны прямая а и точка С .

Пример 2

Даны две параллельные прямые а и b, и секущая с. Докажите, что биссектрисы внутренних накрест лежащих углов, образованных этими прямыми, параллельны (Рис.9)

Доказательство:

Так как прямые а и b параллельны, то углы α и β, образованные этими параллельными прямыми и секущей с, равны как внутренние накрест лежащие, т.е. ∠α = ∠β. Согласно определению, биссектриса — это луч, исходящий из вершины угла между его сторонами, который делит этот угол пополам. Следовательно, биссектрисы d1 и d2 делят углы α и β пополам.

Таким образом, так как углы α и β равны, то и углы α/2 и β/2 также равны. А если углы α/2 и β/2 равны, то они являются внутренними накрест лежащими углами, между секущей с и прямыми, на которых лежат лучи d1 и d2, и согласно теореме: признак параллельности прямых, лучи d1 и d2 лежат на параллельных прямых.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.9 Задача. Даны две параллельные прямые а и b и секущая с.

Пример 3

Один из углов равнобедренного треугольника АВС равен 100° (Рис.10). Найти остальные углы треугольника.

Решение:

Так как сумма углов треугольника составляет 180°, а два угла у равнобедренного треугольника равны, то они не могут равняться 100°. Следовательно, углы при вершинах А и С равны, а угол при вершине В = 100°.

Отсюда следует, что можно составить соотношение:

Ответ: углы равнобедренного треугольника составляют: 100°, 40°, 40°.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.10 Задача. Найти углы треугольника.

Пример 4

Сумма внешних углов треугольника АВС при вершиах А и В равна 240° (Рис.11). Найдите угол С треугольника АВС.

Решение:

Так как сумма углов α + β + α1 + β1 = 360°, а

α1 + β1 = 240° по условию задачи, то

А так как сумма углов треугольника составляет 180°, то

α + β + γ = 180°, т.е.

И следовательно, γ = 60°

Ответ: угол при вершине С = 60°.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.11 Задача. Найти угол треугольника.

Пример 5

В равнобедренном треугольнике АВС с основанием АС проведена биссектриса AD. Угол при вершине В составляет 36° (Рис.12). Докажите, что треугольники CDA и ADB равнобедренные.

Доказательство:

Так как по условию задачи треугольник АВС равнобедренный, то углы при вершинах А и С равны:

α = 72°, а так как AD биссектриса, то ∠BAD = ∠DAC, т.е.

Следовательно, треугольник ADB равнобедренный. Углы при вершинах А и В равны 36°.

Теперь рассмотрим треугольник ADC. Угол λ равен:

λ = 180° — (α / 2 + α)

Таким образом, треугольник ADC равнобедренный. Углы при вершинах С и D равны 72°.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.12 Задача. В равнобедренном треугольнике АВС .

Видео:Две прямые, перпендикулярные третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Две прямые, перпендикулярные третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

150. Докажите, что если две прямые перпендикулярны третьей прямой, то эти прямые параллельны. Мордкович 6 класс математика ГДЗ

150. Докажите, что если две прямые перпендикулярны третьей пря-
мой, то эти прямые параллельны.

доказательство такое
Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

10. При каких значениях р уравнение -х 2 + 6х — 2 = р:
а) не имеет корней;
б) имеет один корень; ( Подробнее. )

Выполните вычисления с помощью микрокалькулятора и резуль-
тат округлите до тысячных:
3,281 ∙ 0,57 + 4,356 ∙ 0,278 — 13,758 ( Подробнее. )

Здравствуйте! Помогите установить соответствие между неравенствами и их решениями: ( Подробнее. )

Здравствуйте! Перед волейбольным турниром измерили рост игроков волейбольной команды города N. Оказалось, что рост каждого из ( Подробнее. )

11.
Выпишите слово, в котором на месте пропуска пишется буква Е.
произнос., шь ( Подробнее. )

Видео:5. Параллельность трех прямыхСкачать

5. Параллельность трех прямых

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок № 8 Перпендикулярность прямой и плоскости

Перечень вопросов, рассматриваемых по теме

  1. Ввести понятие перпендикулярных прямых в пространстве;
  2. Доказать лемму о перпендикулярности двух параллельных прямых;
  3. Решать задачи по теме.

Глоссарий по теме

Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90Если две прямые перпендикулярны третьей прямой то они параллельны между собой. Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися.

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл. Базовый и профильный уровень. М.: Просвещение, 2015. С.1-10.

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 9 класса. Базовый и профильный уровень

Зив Б.Г. Геометрия. Дидактические материалы. 10-11 класс М.: Просвещение, 2015.

Открытые электронные ресурсы:

Перпендикулярность прямой и плоскости. http://school-collection.edu.ru // Единая коллекция цифровых образовательных ресурсов.

Перпендикулярность прямой и плоскости. https://www.yaklass.ru // Я-класс. Образовательный портал Сколково.

Теоретический материал для самостоятельного изучения

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой..

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым а и с. Так как ас, то ∠АМС=90 о .

Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между ними равен 90 о , т.е. b ‖ МА, с ‖ МС, угол между МА и МС равен 90 о

Это означает, что угол между прямыми b и с также равен 90 о , то есть b ⊥ с.

Теорема. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Проведем какую-нибудь прямую x в плоскости α, т.е. x ∊ α.Так как а ⊥ α, то аx.

По лемме о перпендикулярности двух параллельных прямых к третьей а1 ⊥ x.

Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т. е. а1 ⊥ α

Теорема. Ели две прямые перпендикулярны плоскости, то они параллельны.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой а.

Докажем, что прямая b1 совпадает с прямой b. Тем самым будем доказано, что аb. Допустим, что прямые b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, следовательно, аb, т.е. b ∊ β, b1 ∊ β, α Если две прямые перпендикулярны третьей прямой то они параллельны между собойβ = c (невозможно)→ аb

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Теорема. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Пусть дана плоскость α и точка М (см. рис. 2). Нужно доказать, что через точку М проходит единственная прямая с, перпендикулярная плоскости α.

Проведем прямую а в плоскости α (см. рис. 3). Согласно доказанному выше утверждению, через точку М можно провести плоскость γ перпендикулярную прямой а. Пусть прямая b – линия пересечения плоскостей α и γ.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

В плоскости γ через точку М проведем прямую с, перпендикулярную прямой b.

Прямая с перпендикулярна b по построению, прямая с перпендикулярна а (так как прямая а перпендикулярна плоскости γ, а значит, и прямой с, лежащей в плоскости γ). Получаем, что прямая с перпендикулярна двум пересекающимся прямым из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая с перпендикулярна плоскости α. Докажем, что такая прямая с единственная.

Предположим, что существует прямая с1, проходящая через точку М и перпендикулярная плоскости α. Получаем, что прямые с и с1 перпендикулярны плоскости α. Значит, прямые с и с1 параллельны. Но по построению прямые с и с1пересекаются в точке М. Получили противоречие. Значит, существует единственная прямая, проходящая через точку М и перпендикулярная плоскости α, что и требовалось доказать.

Теоретический материал для углубленного изучения

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Доказательство (см. рис. 1)

Пусть нам дана прямая а и точка М. Докажем, что существует плоскость γ, которая проходит через точку М и которая перпендикулярна прямой а.

Через прямую а проведем плоскости α и β так, что точка М принадлежит плоскости α. Плоскости α и β пересекаются по прямой а. В плоскости α через точку М проведем перпендикуляр MN (или р) к прямой а, Если две прямые перпендикулярны третьей прямой то они параллельны между собой. В плоскости β из точки N восстановим перпендикуляр q к прямой а. Прямые р и q пересекаются, пусть через них проходит плоскость γ. Получаем, что прямая а перпендикулярна двум пересекающимся прямым р и q из плоскости γ. Значит, по признаку перпендикулярности прямой и плоскости, прямая а перпендикулярна плоскости γ.

Примеры и разборы решения заданий тренировочного модуля

Выбор элемента из выпадающего списка

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Выпишите ребра, перпендикулярные плоскости (DCЕсли две прямые перпендикулярны третьей прямой то они параллельны между собой).

Правильный вариант/варианты (или правильные комбинации вариантов):

Неправильный вариант/варианты (или комбинации):

Подсказка: в кубе все углы по Если две прямые перпендикулярны третьей прямой то они параллельны между собой. Плоскость (DCЕсли две прямые перпендикулярны третьей прямой то они параллельны между собой), проходит через грань куба DCЕсли две прямые перпендикулярны третьей прямой то они параллельны между собой.

  • Разбор задания: Куб – это геометрическая фигура у которой все углы прямые, следовательно нужно увидеть ребра которые перпендикулярны к плоскости (DCЕсли две прямые перпендикулярны третьей прямой то они параллельны между собой), к грани куба (DDCЕсли две прямые перпендикулярны третьей прямой то они параллельны между собой).Эти ребра — AD, A1D1, BC, B1C1

Закончите предложение, чтобы получилось верное утверждение.

  • Две прямые называются перпендикулярными, если …..
  • Если плоскости перпендикулярна одной из двух параллельных прямых, то она ……

  • Если две прямые перпендикулярны третьей прямой то они параллельны между собой
  • Если две прямые перпендикулярны третьей прямой то они параллельны между собой
  • параллельны
  • один
  • она перпендикулярна к любой прямой, лежай в этой плоскости.
  • перпендикулярна плоскости.

Правильный вариант/варианты (или правильные комбинации вариантов):

Две прямые называются перпендикулярными, если …

угол между ними равен 90Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Если плоскость перпендикулярна одной из двух параллельных прямых, то она …

перпендикулярна и другой

Неправильный вариант/варианты (или комбинации):

Лемма: Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к третьей прямой.

Теорема: если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

💥 Видео

Теорема о двух прямых, параллельных третьейСкачать

Теорема о двух прямых, параллельных третьей

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскости

Теорема о двух прямых параллельных третьейСкачать

Теорема о двух прямых параллельных третьей

Две прямые, перпендикулярные третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Две прямые, перпендикулярные третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)Скачать

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)

Параллельность прямых. Практическая часть. 10 класс.Скачать

Параллельность прямых. Практическая часть.  10 класс.

Если две различные прямые на плоскости перпендикулярны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если две различные прямые на плоскости перпендикулярны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

две прямые перпендикулярные третьей неСкачать

две прямые перпендикулярные третьей не

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.
Поделиться или сохранить к себе:
Главная > Учебные материалы > Математика: Планиметрия. Страница 2
Если две прямые перпендикулярны третьей прямой то они параллельны между собой
Если две прямые перпендикулярны третьей прямой то они параллельны между собой
1 2 3 4 5 6 7 8 9 10 11 12
Если две прямые перпендикулярны третьей прямой то они параллельны между собой
Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.2 Теорема. Признаки параллельности прямых.

Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

3.Свойство углов при пересечении параллельных прямых

Теорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов.

Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3)

Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.3 Теорема. Свойство углов при пересечении параллельных прямых.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

4.Сумма углов треугольника

Теорема. Сумма углов треугольника равна 180 градусов.

Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4).

Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.4 Теорема. Сумма углов треугольника.

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

5.Единственность перпендикуляра к прямой

Теорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую.

Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5)

Теперь проведем через точку А прямую, параллельную нашей перпендикулярной прямой. Она также будет перпендикулярна прямой а. Так как прямая а, перпендикулярна одной из параллельных прямых, перпендикулярна и второй прямой. Отрезок АВ и есть перпендикуляр. Если допустить, что существует другой перпендикуляр, допустим в точке С. То в треугольнике АВС образуются два угла 90 градусов, а это невозможно. Следовательно отрезок АВ — это единственный перпендикуляр, проходящий через точку А.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.5 Теорема. Единственность перпендикуляра к прямой.

Видео:Две прямые, параллельные третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Две прямые, параллельные третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

6. Высота, биссектриса и медиана треугольника

Высотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону.

Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам.

Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6)

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.6 Высота, биссектриса и медиана треугольника.

Видео:Геометрия. 7 класс. Теоремы. Т2. Теорема о двух прямых, перпендикулярных к третьей.Скачать

Геометрия. 7 класс. Теоремы. Т2. Теорема о двух прямых, перпендикулярных к третьей.

7. Свойство медианы равнобедренного треугольника

Теорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой.

Доказательство:

Пусть АВС — данный равнобедренный треугольник с основанием АС. Боковые стороны АВ и ВС равны, ВD — медиана. Необходимо доказать, что BD является биссектрисой и высотой.

Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°.

Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α.

Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой

Рис.7 Свойство медианы равнобедренного треугольника.

Если две прямые перпендикулярны третьей прямой то они параллельны между собой