Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Параллельные плоскости, признак и условия параллельности плоскостей

В данной статье будут изучены вопросы параллельности плоскостей. Дадим определение плоскостям, которые параллельны между собой; обозначим признаки и достаточные условия параллельности; рассмотрим теорию на иллюстрациях и практических примерах.

Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Параллельные плоскости: основные сведения

Параллельные плоскости – плоскости, не имеющие общих точек.

Чтобы обозначить параллельность применяют такой символ: ∥ . Если заданы две плоскости: α и β , являющиеся параллельными, краткая запись об этом будет выглядеть так: α ‖ β .

На чертеже, как правило, плоскости, параллельные друг другу, отображаются как два равных параллелограмма, имеющих смещение относительно друг друга.

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

В речи параллельность можно обозначить так: плоскости α и β параллельны, а также – плоскость α параллельна плоскости β или плоскость β параллельна плоскости α .

Видео:Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||Скачать

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||

Параллельность плоскостей: признак и условия параллельности

В процессе решения геометрических задач зачастую возникает вопрос: а параллельны ли заданные плоскости между собой? Для получения ответа на этот вопрос используют признак параллельности, который также является достаточным условием параллельности плоскостей. Запишем его как теорему.

Плоскости являются параллельными, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Доказательство этой теоремы приводится в программе геометрии за 10 — 11 класс.

В практике для доказательства параллельности, в том числе, применяют две следующие теоремы.

Если одна из параллельных плоскостей параллельна третьей плоскости, то другая плоскость или также параллельна этой плоскости, или совпадает с ней.

Если две несовпадающие плоскости перпендикулярны некоторой прямой, то они параллельны.

На основе этих теорем и самого признака параллельности доказывается факт параллельности любых двух плоскостей.

Рассмотрим подробнее необходимое и достаточное условие параллельности плоскостей α и β , заданных в прямоугольной системе координат трехмерного пространства.

Допустим, что в некоторой прямоугольной системе координат задана плоскость α, которой соответствует общее уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а также задана плоскость β , которую определяет общее уравнение вида A 2 x + B 2 y + C 2 z + D 2 = 0 .

Для параллельности заданных плоскостей α и β необходимо и достаточно, чтобы система линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имела решения (являлась несовместной).

Предположим, что заданные плоскости, определяемые уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 являются параллельными, а значит не имеют общих точек. Таким образом, не существует ни одной точки в прямоугольной системе координат трехмерного пространства, координаты которой отвечали бы условиям одновременно обоих уравнений плоскостей, т.е. система A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имеет решения. Если указанная система не имеет решений, тогда не существует ни одной точки в прямоугольной системе координат трехмерного пространства, чьи координаты одновременно отвечали бы условиям обоих уравнений системы. Следовательно, плоскости, заданные уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 не имеют ни одной общей точки, т.е. они параллельны.

Разберем использование необходимого и достаточного условия параллельности плоскостей.

Заданы две плоскости: 2 x + 3 y + z — 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 . Необходимо определить, являются ли они параллельными.

Решение

Запишем систему уравнений из заданных условий:

2 x + 3 y + z — 1 = 0 2 3 x + y + 1 3 z + 4 = 0

Проверим, возможно ли решить полученную систему линейных уравнений.

Ранг матрицы 2 3 1 2 3 1 1 3 равен одному, поскольку миноры второго порядка равны нулю. Ранг матрицы 2 3 1 1 2 3 1 1 3 — 4 равен двум, поскольку минор 2 1 2 3 — 4 отличен от нуля. Таким образом, ранг основной матрицы системы уравнений меньше, чем ранг расширенной матрицы системы.

Совместно с этим, из теоремы Кронекера-Капелли следует: система уравнений 2 x + 3 y + z — 1 = 0 2 3 x + y + 1 3 z + 4 = 0 не имеет решений. Этим фактом доказывается, что плоскости 2 x + 3 y + z — 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 являются параллельными.

Отметим, что, если бы мы применили для решения системы линейных уравнений метод Гаусса, это дало бы тот же результат.

Ответ: заданные плоскости параллельны.

Необходимое и достаточное условие параллельности плоскостей возможно описать по-другому.

Чтобы две несовпадающие плоскости α и β были параллельны друг другу необходимо и достаточно, чтобы нормальные векторы плоскостей α и β являлись коллинеарными.

Доказательство сформулированного условия базируется на определении нормального вектора плоскости.

Допустим, что n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) являются нормальными векторами плоскостей α и β соответственно. Запишем условие коллинеарности данных векторов:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2 , где t – некое действительное число.

Таким образом, чтобы несовпадающие плоскости α и β с заданными выше нормальными векторами были параллельны, необходимо и достаточно, чтобы имело место действительное число t , для которого верно равенство:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2

В прямоугольной системе координат трехмерного пространства заданы плоскости α и β . Плоскость α проходит через точки: A ( 0 , 1 , 0 ) , B ( — 3 , 1 , 1 ) , C ( — 2 , 2 , — 2 ) . Плоскость β описывается уравнением x 12 + y 3 2 + z 4 = 1 Необходимо доказать параллельность заданных плоскостей.

Решение

Удостоверимся, что заданные плоскости не совпадают. Действительно, так и есть, поскольку координаты точки A не соответствуют уравнению плоскости β .

Следующим шагом определим координаты нормальных векторов n 1 → и n 2 → , соответствующие плоскостям α и β . Также проверим условие коллинеарности этих векторов.

Вектор n 1 → можно задать, взяв векторное произведение векторов A B → и A C → . Их координаты соответственно: ( — 3 , 0 , 1 ) и ( — 2 , 2 , — 2 ) . Тогда:

n 1 → = A B → × A C → = i → j → k → — 3 0 1 — 2 1 — 2 = — i → — 8 j → — 3 k → ⇔ n 1 → = ( — 1 , — 8 , — 3 )

Для получения координат нормального вектора плоскости x 12 + y 3 2 + z 4 = 1 приведем это уравнение к общему уравнению плоскости:

x 12 + y 3 2 + z 4 = 1 ⇔ 1 12 x + 2 3 y + 1 4 z — 1 = 0

Таким образом: n 2 → = 1 12 , 2 3 , 1 4 .

Осуществим проверку, выполняется ли условие коллинеарности векторов n 1 → = ( — 1 , — 8 , — 3 ) и n 2 → = 1 12 , 2 3 , 1 4

Так как — 1 = t · 1 12 — 8 = t · 2 3 — 3 = t · 1 4 ⇔ t = — 12 , то векторы n 1 → и n 2 → связаны равенством n 1 → = — 12 · n 2 → , т.е. являются коллинеарными.

Ответ: плоскости α и β не совпадают; их нормальные векторы коллинеарные. Таким образом, плоскости α и β параллельны.

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Параллельность плоскостей: признаки и свойства

Две плоскости параллельны, если они не имеют общих точек.

Это определение. Однако в практических целях чаще используется признак параллельности плоскостей:

Плоскости параллельны друг другу, если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости.

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Свойства параллельных плоскостей:

  1. Если две плоскости параллельны третьей, то они параллельны друг другу.
  2. Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны. Если две плоскости параллельны одной и той же прямой то они параллельны между собой
  3. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
    Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Видео:10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

Параллельные плоскости и их свойства.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

С параллельными плоскостями мы встречаемся в жизни каждый день. Наиболее наглядный пример – это плоскости потолка и пола (если не брать в расчёт дизайнерские фантазии); это полки в шкафу; это плоскости ступеней (на которые мы наступаем), ну и т.д., и т.п.

Определение. Две плоскости в трёхмерном пространстве называются параллельными, если они не имеют общих точек.

На чертежах параллельные плоскости изображаются в виде одинаковых параллелограммов, которые смещены друг относительно друга, причём, если они расположены близко друг к другу, то не забывайте о невидимых линиях!

Определение. Две прямые в трёхмерном пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Если две плоскости параллельны одной и той же прямой то они параллельны между собойЕсли две плоскости параллельны одной и той же прямой то они параллельны между собой

ТЕОРЕМА (признак параллельности плоскостей). Если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости, то такие плоскости параллельны.

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Доказательство. Предположим, что . Тогда одна из двух пересекающихся прямых или , лежащие в плоскости , пересекает прямую , которая также лежит в плоскости . Но, прямая , в то же время, лежит в плоскости , значит, одна из двух прямых или пересекает плоскость . Однако, по условию теоремы, , значит, (по признаку параллельности прямой и плоскости). Аналогично, , значит, . Мы пришли к противоречию с признаком параллельности прямой и плоскости вследствие того, что сделали изначально неверное предположение. Значит, , ч.т.д.

Свойства параллельных плоскостей.

ТЕОРЕМА 1 (о пересечении двух параллельных плоскостей третьей).

Если две параллельные плоскости пересекаются третьей плоскостью, то прямые пересечения плоскостей параллельны.

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Поскольку , тогда прямые и либо пересекаются, либо параллельны. Но, кроме того, они лежат в параллельных плоскостях, т.е. не могут иметь общих точек. Значит, , ч.т.д.

ТЕОРЕМА 2 (о существовании и единственности плоскости, параллельной данной).

Через точку, расположенную вне данной плоскости, можно провести единственную плоскость, параллельную данной.

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

1. В данной плоскости проведём две пересекающиеся прямые (рисунок слева). Через данную точку проведём прямые и (это возможно сделать по аксиоме планиметрии: «через точку, не лежащую на прямой, можно провести прямую, параллельную данной, и, притом, только одну»). Через две пересекающиеся прямые и проведём плоскость . По признаку параллельности плоскостей, .

2. Докажем единственность существования такой плоскости. Предположим, что через точку проходит ещё одна плоскость , параллельная плоскости (рисунок справа). В плоскости проведём произвольную прямую через точку , а в плоскости отметим произвольную точку . Через прямую и, не лежащую на ней точку , можно провести плоскость , и, притом, только одну. Тогда . Так как (по построению) и (по предположению), то прямые и не пересекают прямую , т.е. и . Мы получили, что через точку в плоскости проходят две прямые и , параллельные одной и той же прямой . Это противоречит аксиоме планиметрии о параллельных прямых. Противоречие возникло вследствие неверного предположения. Значит, через точку вне плоскости можно провести только одну плоскость, параллельную данной, ч.т.д.

ТЕОРЕМА 3 (об отрезках параллельных прямых между параллельными плоскостями).

Отрезки параллельных прямых, отсекаемые параллельными плоскостями, равны между собой. Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Так как прямые и параллельны, то через них можно провести плоскость . Тогда . Согласно теореме 1, . Значит, – параллелограмм. Т.к. у параллелограмма противоположные стороны равны, то , ч.т.д.

ТЕОРЕМА 4 (о транзитивности отношения параллельности плоскостей).

Если две различные плоскости параллельны третьей плоскости, то они параллельны между собой.

Если две плоскости параллельны одной и той же прямой то они параллельны между собой

Предположим, что . Тогда , т.е. эти плоскости имеют общую точку. Значит, через одну точку проходят две плоскости и , параллельные одной и той же плоскости . А это противоречит теореме 2 о существовании и единственности плоскости, параллельной данной. Противоречие возникло вследствие неверного предположения, значит, , ч.т.д.

🔍 Видео

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

№123. Докажите, что если две плоскости α и β перпендикулярны к прямой а, то они параллельны.Скачать

№123. Докажите, что если две плоскости α и β перпендикулярны к прямой а, то они параллельны.

№51. Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые mСкачать

№51. Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые m

ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрияСкачать

ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрия

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскости

10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

10 класс, 11 урок, Свойства параллельных плоскостейСкачать

10 класс, 11 урок, Свойства параллельных плоскостей

№60. Две плоскости a и β параллельны плоскости γ. Докажите, что плоскости a и β параллельны.Скачать

№60. Две плоскости a и β параллельны плоскости γ. Докажите, что плоскости a и β параллельны.

Параллельность прямых. Практическая часть. 10 класс.Скачать

Параллельность прямых. Практическая часть.  10 класс.

Геометрия 10 класс : Параллельные плоскости и их свойстваСкачать

Геометрия 10 класс : Параллельные плоскости и их свойства

Стереометрия "с нуля" Урок 4 Параллельность плоскостейСкачать

Стереометрия "с нуля" Урок 4 Параллельность плоскостей

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 классСкачать

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 класс
Поделиться или сохранить к себе: