Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Геометрия. 10 класс
Конспект урока

Геометрия, 10 класс

Урок №4. Параллельность прямых, прямой и плоскости

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных прямых;
  2. Теорема о единственности прямой, параллельной данной, проходящей через данную точку;
  3. лемма о двух параллельных прямых;
  4. теорему о параллельности трех прямых;
  5. определение параллельных прямой и плоскости;
  6. признаком параллельности прямой и плоскости.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые − прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл.– М.: Просвещение, 2014. 255 с.

Зив Б. Г. Дидактические материалы. Геометрия 10 кл. – М.: Просвещение, 2014. 96 с.

Глазков Ю. А., Юдина И. И., Бутузов В.Ф. Рабочая тетрадь. Геометрия 10 кл.-М.: Просвещение, 2013. 65 с.

Теоретический материал для самостоятельного изучения

Геометрия, которую мы изучаем, называется евклидовой, по имени древнегреческого ученого Евклида (3 век до нашей эры), который создал целый труд по математике под названием «Начала». В данной книге есть раздел о параллельных прямых.

В советском энциклопедическом словаре слово «параллельность» переводится с греческого языка, как «идущий рядом».

В средние века параллельность обозначалась знаком «=». В 1557 году Р. Рекордом для обозначения равенства был введен знак «=», которым мы пользуемся сейчас, а параллельность стали обозначать «║».

В книге «Начала» определение параллельных прямых звучало так «прямые, лежащие в одной плоскости и будучи бесконечно продолжены в обе стороны, ни с той, ни с другой стороны не пересекаются». Это определение почти не отличается от современного.

В области параллельных прямых работало очень много учёных: Н.И. Лобаческий (18-19 век); Аббас ал-Джаухари (работал в Багдаде в 9 веке); Фадл ал-Найризи (Богдад 10 век); Герард (Италия 12 век); Иоганн Генрих Ламберт (Берлин) и многие другие.

Каково расположение 2-х прямых на плоскости (совпадают, пересекаются, параллельны) (рис. 1 а, б, в).

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскостиПерейдем к взаимному расположению 2-х прямых в пространстве. Как и в планиметрии, две различные прямые в пространстве либо пересекаются в одной точке, либо не пересекаются (не имеют общих точек). Но второй случай допускает две возможности: прямые лежат в одной плоскости (параллельны) или прямые не лежат в одной плоскости. В первом случае они параллельны, а во втором — такие прямые называются скрещивающимися.

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскостиПроиллюстрировать данные определения наглядно нам поможет куб.

Давайте укажем некоторые пары параллельных прямых:

AB||A₁B₁; AB|| CD; A₁B₁||C₁D₁; CD||C₁D₁; AD||A₁D₁; BC||B₁D₁; AD||BC; A₁D₁||B₁C₁.

А теперь рассмотрим некоторые пары скрещивающихся прямых, как мы отметили, они не должны лежать в одной плоскости:

AB A₁D₁; AB B₁C₁; CD A₁D₁; CD B₁C₁; BC C₁D₁; BC A₁B₁; AB B₁C₁; AB A₁D₁.

Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

  1. М и а задают плоскость α
  2. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т.е. в плоскости α.
  3. В плоскости α через точку М проходит прямая, параллельная прямой а, и притом только одна- это нам известно из кураса планиметрии.
  4. На чертеже эта прямая обозначена буквой b .
  5. Следовательно, b-единственная прямая, проходящая через точку М паралельно прямой а.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Аналогично определяется праралельность отрезка и прямой, а так же паралельность двух лучей.

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскостиЛемма. Если одна из двух паралельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

  1. Рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M(а рис.).
  2. Мы знаем, что через параллельные прямые a и b можно провести только одну плоскость β. (теорема)
  1. Так как точка M находится на прямой b, то M также принадлежит плоскости β (б рис.). Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая p, которая является прямой пересечения этих плоскостей (4 аксиома).
  1. Прямые a, b и c находятся в плоскости β.

Если в этой плоскости одна из параллельных прямых b пересекает прямую p, то вторая прямая a тоже пересекает p.

  1. Точку пересечения прямых a и p обозначим за N.

Так как точка N находится на прямой p, то N находится в плоскости α и является единственной общей точкой прямой a и плоскости α.

  1. Значит, прямая a пересекает плоскость α в точке N.

Нам известно из курса планиметрии, что если три прямые лежат в одной плоскости и две из них параллельны третьей, то эти две прямые параллельны. Похожее утверждение имеет место и для трех прямых в пространстве.

Теорема. Если две прямые параллельны третьей прямой, то они параллельны.

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскостиДоказательство:

Выберем точку M на прямой b.

Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (Через прямую и не лежащую на ней точку можно провести только одну плоскость).

Возможны два случая:

1) прямая b пересекает плоскость α или 2) прямая b находится в плоскости α.

Пусть прямая b пересекает плоскость α.

Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость. Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным. Значит, прямая b находится в плоскости α.

Теперь нужно доказать, что прямые a и b параллельны.

Пусть у прямых a и b есть общая точка L.

Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.

Так как прямые a и b находятся в одной плоскости α и у них нет общих точек, то они параллельны.

Если две точки прямой лежат в данной плоскости, то по аксиоме А₂ вся прямая лежит в этой плоскости. Из этого следует, что возможны три расположения прямой и плоскости:

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Наглядный пример, который дает представление о прямой, параллельной плоскости- это линия пересечения стены и потолка-она параллельна плоскости пола.

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Теорема (Признак параллельности прямой и плоскости)
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой на этой плоскости, то эта прямая параллельна данной плоскости.

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Доказательство:
Доказательство проведем от противного. Пусть a не параллельна плоскости α, тогда прямая a пересекает плоскость в некоторой точке A. Причем A не находится на b, так как a∥b. Согласно признаку скрещивающихся прямых, прямые a и b скрещивающиеся.

Мы пришли к противоречию. Так как согласно данной информации a∥b, они не могут быть скрещивающимися. Значит, прямая a должна быть параллельна плоскости α.Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Существует еще два утверждения, которые используются при решении задач:

  1. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
  2. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо тоже параллельна данной плоскости, либо лежит в этой плоскости.

Примеры и разбор решения заданий тренировочного модуля

Тип задания: Ввод с клавиатуры пропущенных элементов в тексте

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Дано: в ∆ АВС КМ − средняя линия, КМ=5; ACFE- параллелограмм.

Решение: Т.к. КМ − средняя линия, то АС= 2·КМ, то АС=2·7=10

Т.к. ACFE − параллелограмм, то АС=EF=10

Тип задания: Единичный / множественный выбор

Точка М не лежит в плоскости ромба ABCD. На отрезке АМ выбрана точка Е так, что MЕ:ЕА=1:3. Точка F – точка пересечения прямой МВ с плоскостью CDE. Найдите АВ, если AD= 8 cм.

MC Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Т.к. AD||BC||FK, следовательно, треугольники MFK и MBC- подобны (по трем углам). Значит

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости. BC=AD= 8 см; Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Параллельные прямые в пространстве. Параллельность трех прямых

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Если две параллельные прямые пересечены третьей то все три прямые лежат в одной плоскости

На этом уроке мы дадим основные определения и теоремы на тему параллельных прямых в пространстве.
В начале урока рассмотрим определение параллельных прямых в пространстве и докажем теорему о том, что через любую точку пространства можно провести только одну прямую, параллельную данной. Далее докажем лемму о двух параллельных прямых, пересекающих плоскость. И с ее помощью докажем теорему о двух прямых, параллельных третьей прямой.

Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Параллельность 3 прямых в пространстве

Вы будете перенаправлены на Автор24

В объёмном мире возможно три основных типа отношений прямых относительно друг друга:

  1. Прямые по отношению к друг другу скрещиваются, то есть лежат в непересекающихся плоскостях и не имеют ничего общего в отличие от пересекающихся прямых. Хорошим примером будет расположение развязки на дороге, когда над одной дорогой, которая лежит на уровне земли, сверху другая. Другая иллюстрация к этому типу отношений — река и проходящая над ней железная дорога.
  2. Две прямые являются параллельными и в этом случае они лежат в одной плоскости. Здесь в качестве иллюстрации из мира вспомним железнодорожные рельсы, идущие параллельно друг другу. Также параллельны друг другу, например, две вертикальные грани дома.
  3. Две прямые пересекаются друг с другом и также лежат в одной плоскости. Иллюстрация из реальной жизни — это перекрёсток обычной дороги. Также одна горизонтальная, а другая вертикальная грани дома являются примером пересекающихся прямых.

Под параллельными прямыми следует понимать прямые, лежащие в одной и той же плоскости и не имеющие каких-либо точек соприкосновения друг с другом.

Рисунок 1. Типы отношений прямых в объёмном мире

В этой статье мы более подробно познакомимся с теоремой о трёх параллельных прямых в евклидовом пространстве и её доказательством.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Теорема о параллельности 3 прямых в евклидовом пространстве

Если каждая из двух прямых $a$ и $b$ в пространстве параллельны некой третьей прямой $c$, то эти прямые $a$ и $b$ параллельны также между собой.

Видео:№15. Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскостиСкачать

№15. Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскости

Доказательство теоремы о параллельности трех прямых в пространстве

Готовые работы на аналогичную тему

Рисунок 2. Параллельность трех прямых в пространстве — доказательство

Рассмотрим прямые $a$, $b$ и $c$, причём $a$ параллельна $c$, и $b$ параллельна $c$. Отметим на прямой $b$ точку $N$.

Как известно, прямая и не возлежащая по её длине точка достаточны для задания единственной плоскости, то есть прямая $a$ и точка $N$ являются достаточными для задания некой плоскости $α$. Теперь рассмотрим нашу вторую подопечную $b$.

Предположим, что она встречается с плоскостью $α$ в каком-то месте пространства, например, в точке $N$, тогда воспользовавшись леммой о двух параллельных прямых (см. ниже) получается, что её подруга $c$ также должна пересекать плоскость $α$.

Из этого можно сделать ошибочный вывод, что прямая $a$ тоже пересекает плоскость $α$, так как она также параллельна прямой $c$. Но это совсем не так, так как прямая $a$ возлежит в плоскости $a$.

$a$ и $b$ не имеют общих точек, так как если бы они имели их, то ситуация, при которой каждая из них при этом оставалась бы параллельна прямой $c$ была бы не реализуема, следовательно, $a$ и $b$ также параллельны друг другу.

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Лемма о двух параллельных прямых, использовавшаяся для доказательства теоремы о трёх параллельных прямых

Если одна из параллельных прямых пересекает некую плоскость, то и вторая прямая также пересекает эту плоскость.

Рисунок 3. Задача о параллельности трех прямых в пространстве

Необходимо найти периметр $MNQP$, при этом $AD = 12$ см, $BC = 14$

Рисунок 4. Задача о параллельности трех прямых в пространстве

  1. $MN || BC, QP || BC =>$ по теореме о параллельности трёх прямых $MN || QP$
  2. $MP || DA, NQ || DA =>$ по теореме о параллельности трёх прямых $MP || NQ$
  3. $MN || QP, MP || NQ => MNQP$ является параллелограммом
  4. $P_ = 2 cdot (MN + MP)$
  5. $MN = frac= frac= 7$ см
  6. $MP = frac= frac= 6$ см
  7. $P_ = 2 cdot (6 + 7) = 26$ см.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 09 01 2022

💥 Видео

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

10 класс, 3 урок, Некоторые следствия из аксиомСкачать

10 класс, 3 урок, Некоторые следствия из аксиом

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||Скачать

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскости

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Доказательство 2 и 3 признаков параллельности прямых.Скачать

Доказательство 2 и 3 признаков параллельности прямых.

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

ГЕОМЕТРИЯ 10 класс : Параллельность прямых, прямой и плоскостиСкачать

ГЕОМЕТРИЯ 10 класс : Параллельность прямых, прямой и плоскости

№64. Три прямые, проходящие через одну точку и не лежащие в одной плоскости, пересекают однСкачать

№64. Три прямые, проходящие через одну точку и не лежащие в одной плоскости, пересекают одн

Параллельные прямые. Видеоурок 2. Геометрия 10 классСкачать

Параллельные прямые. Видеоурок 2. Геометрия 10 класс

Параллельные, пересекающиеся и скрещивающиеся прямые | МатематикаСкачать

Параллельные, пересекающиеся и скрещивающиеся прямые | Математика

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 классСкачать

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 класс
Поделиться или сохранить к себе:
    1. прямая лежит в плоскости
    1. прямая и плоскость имеют только одну общую точку, т.е. пересекаются
    1. прямая и плоскость не имеют ни одной общей точки