Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

  • Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

§3. Свойства касательных, хорд, секущих. Вписанные и описанные четырёхугольники

Если через данную точку к окружности проведены
Рис. 17

Если из точки к окружности проведены две касательные, то длины отрезков от этой точки до точек касания равны и прямая, проходящая через центр окружности и эту точку, делит угол между касательными пополам (рис. 17).

Используя это свойство, легко решить следующую задачу.

На основании $$ AC$$ равнобедренного треугольника $$ ABC$$ расположена точка $$ D$$ так, что $$ AD=a,CD=b$$. Окружности, вписанные в треугольники $$ ABD$$ и $$ DBC$$, касаются прямой $$ BD$$ в точках $$ M$$ и $$ N$$ соответственно. Найти отрезок $$ MN$$.

Если через данную точку к окружности проведеныЕсли через данную точку к окружности проведены
Рис. 18Рис. 18a

$$ DE=y$$, $$ QD=x+y$$, $$ AQ=AP=a-(x+y)$$, $$ EC=CF=b-y$$, $$ PB=BM=z, BF=BN=z+x$$ (рис. 18а). Выразим боковые стороны:

$$ AB=z+a-x-y$$, $$ BC=z+x+b-y$$. По условию $$ AB=BC$$; получим

Четырёхугольник называется описанным около окружности, если окружность касается всех его сторон.

В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин противолежащих сторон равны.

Если через данную точку к окружности проведены
Рис. 19

Пусть четырёхугольник $$ ABCD$$ описан около окружности (рис. 19).

По свойству касательных: $$ AM=AN$$, $$ NB=BP$$, $$ PC=CQ$$ и $$ QD=DM$$, поэтому

$$ AM+MD+BP+PC=AN+NB+CQ+QD$$, что означает

Докажем обратное утверждение. Пусть в выпуклом четырёхугольнике $$ ABCD$$ стороны удовлетворяют условию $$ AB+CD=BC+AD.$$ Положим $$ AD=a, AB=b, BC=c, CD=d.$$

По условию $$ a+c=b+d,$$ что равносильно $$ c-b=d-a.$$

Пусть $$ d>a.$$ Отложим на большей стороне $$ CD$$ меньшую сторону `DM=a` (рис. 20). Так как в этом случае $$ c>b$$, то также отложим $$ BN=b$$, получим три равнобедренных треугольника `ABN`, `ADM` и `MCN`.

Если через данную точку к окружности проведены
Рис. 20

В равнобедренном треугольнике биссектриса угла при вершине является медианой и высотой, отсюда следует, что если провести биссектрисы углов `B`, `C` и `D`, то они разделят пополам соответственно отрезки `AN`, `MN` и `AM` и будут им перпендикулярны. Это означает, что биссектрисы будут серединными перпендикулярами трёх сторон треугольника $$ ANM$$, а они по теореме пересекаются в одной точке. Обозначим эту точку $$ O$$. Эта точка одинаково удалена от отрезков `AB` и `BC` (лежит на $$ OB$$), `BC` и `CD` (лежит на $$ OC$$) и `CD` и `AD` (лежит на $$ OD$$), следовательно, точка $$ O$$ одинакова удалена от всех четырёх сторон четырёхугольника $$ ABCD$$ и является центром вписанной окружности. Случай $$ d=a$$, как более простой, рассмотрите самостоятельно.

Равнобокая трапеция описана около окружности. Найти радиус окружности, если длины оснований равны $$ a$$ и $$ b$$.

Если через данную точку к окружности проведены
Рис. 21

Пусть в равнобокой трапеции $$ ABCD$$ `BC=b`, `AD=a` (рис. 21). Эта трапеция равнобокая $$ (AB=CD)$$, она описана около окружности, следовательно, $$ AB+CD=AD+BC$$ Отсюда получаем:

Проведём $$ BM$$ и $$ CN$$ перпендикулярно $$ AD$$. Трапеция равнобокая, углы при основании равны, следовательно, равны и треугольники $$ ABM$$ и $$ DCN$$ и $$ AM=ND$$. По построению $$ MBCN$$ — прямоугольник, $$ MN=BC=b$$ поэтому $$ AM=<displaystyle frac>(AD-BC)-<displaystyle frac>(a-b)$$. Из прямоугольного треугольника $$ ABM$$ находим высоту трапеции $$ ABCD$$:

Очевидно, что высота трапеции равна диаметру окружности, поэтому

радиус вписанной окружности равен $$ overline<)r=<displaystyle frac>sqrt>$$.

Очень полезная задача. Заметим, что из решения также следует, что в равнобокой описанной трапеции $$ overline<)mathrmalpha =<displaystyle frac>>$$.

Градусная мера угла, образованного хордой и касательной, имеющими общую точку на окружности, равна половине градусной меры дуги, заключённой между его сторонами (рис. 22).

Если через данную точку к окружности проведены
Рис. 22

Рассматриваем угол $$ NAB$$ между касательной $$ NA$$ и хордой $$ AB$$. Если $$ O$$ — центр окружности, то $$ OAperp AN$$, `/_OAB=/_OBA=90^@alpha`. Сумма углов треугольника равна `180^@`, следовательно, $$ angle AOB=2alpha $$. Итак, $$ alpha =angle NAB=<displaystyle frac>angle AOB.$$

Обратим внимание, что угол $$ NAB$$ равен любому вписанному углу $$ AKB$$, опирающемуся на ту же дугу $$ AB$$.

Случай `/_alpha>=90^@` рассматривается аналогично.

Из этого свойства следует важная теорема «о касательной и секущей», которая часто используется при решении задач.

Пусть к окружности проведены из одной точки касательная $$ MA$$ и секущая $$ MB$$, пересекающая окружность в точке $$ C$$ (рис. 23). Тогда справедливо равенство

т. е. если из точки `M` к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки `M` до точки касания равен произведению длин отрезков секущей от точки `M` до точек её пересечения с окружностью.

Угол $$ MAC$$ образован хордой и касательной, $$ angle MAC=angle ABC$$. Так как в треугольниках $$ MAC$$ и $$ MBA$$ угол $$ M$$ общий, то по двум углам они подобны. Из подобия следует:

Если через данную точку к окружности проведены
Рис. 23

Если из точки $$ M$$ к окружности проведены две секущие: $$ MB$$, пересекающая окружность в точке $$ C$$ и $$ MK$$, пересекающая окружность в точке $$ L$$ (рис. 23), то справедливо равенство $$ MB·MC=MK·ML$$.

Если через данную точку к окружности проведены
Рис. 24

Окружность проходит через вершины $$ C u D$$ трапеции $$ ABCD,$$ касается боковой стороны $$ AB$$ в точке $$ B$$ и пересекает большее основание $$ AD$$ в точке $$ K$$ (рис. 24). Известно, что $$ AB=5sqrt$$, $$ BC=5$$ и $$ KD=10$$.

Найти радиус окружности.

1. Пусть $$ AK=x$$ тогда $$ AD=10+x$$ю

По теореме о касательной и секущей:

$$ A^=AK·KD$$ т. е. $$ 75=x(x+10)$$, откуда $$ x=5$$. Итак $$ AD=15$$.

2. Заметим теперь, что угол $$ ABD$$ между касательной $$ AB$$ и хордой $$ BD$$ равен вписанному углу $$ BCD$$, а из параллельности прямых $$ AD$$ и $$ BC$$ следует равенство углов `1` и `2`. По первому признаку подобия $$ △ABDsim △DCB$$. Из подобия имеем $$ <displaystyle frac>=<displaystyle frac><displaystyle frac>$$. Из последнего равенства находим, что $$ B^=AD·BC$$, т. е. $$ BD=sqrt=5sqrt$$, а из первого равенства находим $$ CD=<displaystyle frac>=5$$.

3. Так как $$ KB=CD$$ ($$ KBCD$$ — вписанная трапеция, она равнобокая), и $$ K^+B^=K^,$$ то `/_ KBD=90^@` и $$ KD$$ — диаметр окружности.

Значит, её радиус равен `5`.

Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противолежащих углов равна `180^@`.

Из этой теоремы следует:

a) из всех параллелограммов только около прямоугольника можно описать окружность;

б) около трапеции можно описать окружность только тогда, когда она равнобокая.

Если через данную точку к окружности проведены
Рис. 25

В треугольнике $$ ABC$$ биссектрисы $$ AD$$ и $$ BF$$ пересекаются в точке $$ O$$ (рис. 25). Известно, что точки $$ F, O, D$$, и `C` лежат на одной окружности и что $$ DF=sqrt.$$ Найти площадь треугольника $$ ODF$$.

Четырёхугольник $$ DOFC$$ вписан в окружность, по теореме 9:

$$ angle DOF=pi -angle C$$, т. е. $$ pi -<displaystyle frac>(angle A+angle B)=pi -angle C$$, откуда, учитывая, что $$ angle A+angle B+angle C=pi $$, находим $$ angle С=<displaystyle frac>$$.

Теперь заметим, что $$ O$$ — точка точка пересечения биссектрис, $$ CO$$ — биссектриса угла $$ C,$$ следовательно, углы $$ OCD$$ и $$ OCF$$ равны друг другу. Это вписанные углы, поэтому вписанные углы $$ ODF$$ и $$ OFD$$ равны им и равны друг другу. Таким образом,

Треугольник $$ DOF$$ равнобедренный с основанием $$ DF=sqrt$$ и углом при основании `30^@`. Находим его высоту, опущенную из вершины $$ O$$ и площадь треугольника $$ ODF: S=<displaystyle frac>h·DF=<displaystyle frac<sqrt>>$$.

Касательная к окружности

Если через данную точку к окружности проведены

О чем эта статья:

Видео:Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Если через данную точку к окружности проведены

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Если через данную точку к окружности проведены

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Если через данную точку к окружности проведены

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Если через данную точку к окружности проведены

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Если через данную точку к окружности проведены

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Если через данную точку к окружности проведены

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Если через данную точку к окружности проведены

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Если через данную точку к окружности проведены

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Если через данную точку к окружности проведены

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Если через данную точку к окружности проведены

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Если через данную точку к окружности проведены

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Если через данную точку к окружности проведены

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Геометрия Докажите, что если через точку A к окружности проведены касательная AM (M – точка касания)Скачать

Геометрия Докажите, что если через точку A к окружности проведены касательная AM (M – точка касания)

Если через данную точку к окружности проведены

§ 20. Некоторые свойства окружности. Касательная к окружности

Если через данную точку к окружности проведены

Диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.

Если через данную точку к окружности проведены

Если хорда является диаметром, то теорема очевидна.

На рисунке 287 изображена окружность с центром O , M — точка пересечения диаметра CD и хорды AB , CD ⊥ AB . Надо доказать, что AM = MB .

Проведём радиусы OA и OB . В равнобедренном треугольнике AOB ( OA = OB ) отрезок OM — высота, а значит, и медиана, т. е. AM = MB . Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Диаметр окружности, делящий хорду, отличную от диаметра, пополам, перпендикулярен этой хорде.

Докажите эту теорему самостоятельно. Подумайте, будет ли верным это утверждение, если хорда является диаметром.

На рисунке 288 показаны все возможные случаи взаимного расположения прямой и окружности. На рисунке 288, а они не имеют общих точек, на рисунке 288, б — имеют две общие точки, на рисунке 288, в — одну.

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Прямую, имеющую с окружностью только одну общую точку, называют касательной к окружности.

Касательная к окружности имеет только одну общую точку с кругом, ограниченным этой окружностью. На рисунке 288, в прямая a — касательная к кругу с центром в точке O , A — точка касания.

Если отрезок (луч) принадлежит касательной к окружности и имеет с этой окружностью общую точку, то говорят, что отрезок (луч) касается окружности. Например, на рисунке 289 изображён отрезок AB , который касается окружности в точке С .

Если через данную точку к окружности проведены

Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

На рисунке 290 изображена окружность с центром O , A — точка касания прямой a и окружности. Надо доказать, что OA ⊥ a .

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Предположим, что это не так, т. е. отрезок OA — наклонная к прямой a . Тогда из точки O опустим перпендикуляр OM на прямую a (рис. 291). Поскольку точка A — единственная общая точка прямой a и круга с центром O , то точка M не принадлежит этому кругу. Отсюда OM = MB + OB , где точка B — точка пересечения окружности и перпендикуляра OM . Отрезки OA и OB равны как радиусы окружности. Таким образом, OM > OA. Получили противоречие: перпендикуляр OM больше наклонной OA . Следовательно, OA ⊥ a . Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

(признак касательной к окружности)

Если прямая, проходящая через точку окружности, перпендикулярна радиусу, проведённому в эту точку, то эта прямая является касательной к данной окружности.

Если через данную точку к окружности проведены

На рисунке 290 изображена окружность с центром в точке O , отрезок OA — её радиус, точка A принадлежит прямой a , OA ⊥ a . Докажем, что прямая a — касательная к окружности.

Пусть прямая a не является касательной, а имеет ещё одну общую точку B с окружностью (рис. 292). Тогда ∆ AOB — равнобедренный ( OA = OB как радиусы). Отсюда ∠ OBA = ∠ OAB = 90°. Получаем противоречие: в треугольнике AOB есть два прямых угла. Следовательно, прямая a является касательной к окружности. Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Если расстояние от центра окружности до некоторой прямой равно радиусу окружности, то эта прямая является касательной к данной окружности.

Если через данную точку к окружности проведены

Докажите это следствие самостоятельно.

Если через данную точку к окружности проведены

Задача. Докажите, что если через данную точку к окружности проведены две касательные, то отрезки касательных, соединяющих данную точку с точками касания, равны.

Решение. На рисунке 293 изображена окружность с центром O . Прямые AB и AC — касательные, точки B и C — точки касания. Надо доказать, что AB = AC .

Проведём радиусы OB и OC в точки касания. По свойству касательной OB ⊥ AB и OC ⊥ AC . В прямоугольных треугольниках AOB и AOC катеты OB и OC равны как радиусы одной окружности, AO — общая гипотенуза. Следовательно, треугольники AOB и AOC равны по гипотенузе и катету. Отсюда AB = AC . Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

507. Начертите окружность с центром O , проведите хорду AB . Пользуясь угольником, разделите эту хорду пополам.

508. Начертите окружность с центром O , проведите хорду CD . Пользуясь линейкой со шкалой, проведите диаметр, перпендикулярный хорде CD .

509. Начертите окружность, отметьте на ней точки A и B . Пользуясь линейкой и угольником, проведите прямые, которые касаются окружности в точках A и B .

510. Проведите прямую a и отметьте на ней точку M . Пользуясь угольником, линейкой и циркулем, проведите окружность радиуса 3 см, которая касается прямой a в точке M . Сколько таких окружностей можно провести?

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

511. На рисунке 294 точка O — центр окружности, диаметр CD перпендикулярен хорде AB . Докажите, что ∠ AOD = ∠ BOD .

512. Докажите, что равные хорды окружности равноудалены от её центра.

513. Докажите, что если хорды окружности равноудалены от её центра, то они равны.

514. Верно ли, что прямая, перпендикулярная радиусу окружности, касается этой окружности?

515. Прямая CD касается окружности с центром O в точке A , отрезок AB — хорда окружности, ∠ BAD = 35° (рис. 295). Найдите ∠ AOB .

516. Прямая CD касается окружности с центром O в точке A , отрезок AB — хорда окружности, ∠ AOB = 80° (см. рис. 295). Найдите ∠ BAC .

517. Дана окружность, диаметр которой равен 6 см. Прямая a удалена от её центра на: 1) 2 см; 2) 3 см; 3) 6 см. В каком случае прямая a является касательной к окружности?

518. В треугольнике ABC известно, что ∠ C = 90°. Докажите, что:

1) прямая BC является касательной к окружности с центром A , проходящей через точку C ;

2) прямая AB не является касательной к окружности с центром C , проходящей через точку A .

Если через данную точку к окружности проведены

519. Докажите, что диаметр окружности больше любой хорды, отличной от диаметра.

520. В окружности с центром O через середину радиуса провели хорду AB , перпендикулярную ему. Докажите, что ∠ AOB = 120°.

521. Найдите угол между радиусами OA и OB окружности, если расстояние от центра O окружности до хорды AB в 2 раза меньше: 1) длины хорды AB ; 2) радиуса окружности.

522. В окружности провели диаметр AB и хорды AC и CD так, что AC = 12 см, ∠ BAC = 30°, AB ⊥ CD . Найдите длину хорды CD .

523. Через точку M к окружности с центром O провели касательные MA и MB , A и B — точки касания, ∠ OAB = 20°. Найдите ∠ AMB .

524. Через концы хорды AB , равной радиусу окружности, провели две касательные, пересекающиеся в точке C . Найдите ∠ ACB .

525. Через точку C окружности с центром O провели касательную к этой окружности, AB — диаметр окружности. Из точки A на касательную опущен перпендикуляр AD . Докажите, что луч AC — биссектриса угла BAD .

526. Прямая AC касается окружности с центром O в точке A (рис. 296). Докажите, что угол BAC в 2 раза меньше угла AOB .

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

Если через данную точку к окружности проведены

527. Отрезки AB и BC — соответственно хорда и диаметр окружности, ∠ ABC = 30°. Через точку A провели касательную к окружности, пересекающую прямую BC в точке D . Докажите, что ∆ ABD — равнобедренный.

528. Известно, что диаметр AB делит хорду CD пополам, но не перпендикулярен ей. Докажите, что CD — также диаметр.

Если через данную точку к окружности проведены

529. Найдите геометрическое место центров окружностей, которые касаются данной прямой в данной точке.

530. Найдите геометрическое место центров окружностей, которые касаются обеих сторон данного угла.

531. Найдите геометрическое место центров окружностей, которые касаются данной прямой.

532. Прямые, касающиеся окружности с центром O в точках A и B , пересекаются в точке K , ∠ AKB = 120°. Докажите, что AK + BK = OK .

533. Окружность касается стороны AB треугольника ABC в точке M и касается продолжения двух других сторон. Докажите, что сумма длин отрезков BC и BM равна половине периметра треугольника ABC .

Если через данную точку к окружности проведены

534. Через точку C проведены касательные AC и BC к окружности, A и B — точки касания (рис. 297). На окружности взяли произвольную точку M , лежащую в одной полуплоскости с точкой C относительно прямой AB , и через неё провели касательную к окружности, пересекающую прямые AC и BC в точках D и E соответственно. Докажите, что периметр треугольника DEC не зависит от выбора точки M .

Если через данную точку к окружности проведены

Упражнения для повторения

535. Докажите, что середина M отрезка, концы которого принадлежат двум параллельным прямым, является серединой любого отрезка, который проходит через точку M и концы которого принадлежат этим прямым.

536. Отрезки AB и CD лежат на одной прямой и имеют общую середину. Точку M выбрали так, что треугольник AMB — равнобедренный с основанием AB . Докажите, что ∆ CMD также является равнобедренным с основанием CD .

537. На стороне MK треугольника MPK отметили точки E и F так, что точка E лежит между точками M и F , ME = EP , PF = FK . Найдите угол M , если ∠ EPF = 92°, ∠ K = 26°.

538. В остроугольном треугольнике ABC проведена биссектриса BM , из точки M на сторону BC опущен перпендикуляр MK , ∠ ABM = ∠ KMC . Докажите, что треугольник ABC — равнобедренный.

Если через данную точку к окружности проведены

Наблюдайте, рисуйте, конструируйте, фантазируйте

539. Установите закономерность форм фигур, изображённых на рисунке 298. Какую фигуру надо поставить следующей?

🔍 Видео

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

№635. Через точку А окружности проведены касательная и хорда, равная радиусу окружности.Скачать

№635. Через точку А окружности проведены касательная и хорда, равная радиусу окружности.

№658. Через точку А к данной окружности проведены касательная АВ (В — точка касания) и секущая ADСкачать

№658. Через точку А к данной окружности проведены касательная АВ (В — точка касания) и секущая AD

Если из точки M проведены две касательные ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если из точки M проведены две касательные ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вариант 77, № 7. Свойство касательной. Теорема о касательных, проведенных из одной точки. Задача 1Скачать

Вариант 77, № 7. Свойство касательной. Теорема о касательных, проведенных из одной точки. Задача 1

Через точку A, лежащую вне окружности, проведены две прямые.Скачать

Через точку A, лежащую вне окружности, проведены две прямые.

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

№640. Даны окружность с центром О радиуса 4,5 см и точка А. Через точку А проведены две касательныеСкачать

№640. Даны окружность с центром О радиуса 4,5 см и точка А. Через точку А проведены две касательные

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

№796. Из концов диаметра CD данной окружности проведены перпендикуляры СС1 и DD1 к касательнойСкачать

№796. Из концов диаметра CD данной окружности проведены перпендикуляры СС1 и DD1 к касательной

Окружность. 7 класс.Скачать

Окружность. 7 класс.

№138. Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которымиСкачать

№138. Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми

№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать

№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острый

Из точки С проведены две касательные к окружности с центром в точке ОСкачать

Из точки С проведены две касательные к окружности с центром в точке О
Поделиться или сохранить к себе: