Движение заряда по окружности в магнитном поле

Движение заряженной частицы в магнитном поле.

Для вывода общих закономерностей движения заряженной частицы в магнитном поле будем считать магнитное поле однородным, электрические поля на частицу не действуют. При этом учтем очевидное:

а) Если заряженная частица движется в магнитном поле вдоль силовой линии, сила Лоренца, действующая на неё, равна нулю

б) Если заряженная частица движется в магнитном поле со скоростью Движение заряда по окружности в магнитном поле, перпендикулярно к вектору Движение заряда по окружности в магнитном поле, то сила Лоренца, равная Движение заряда по окружности в магнитном полепостоянна по модулю и перпендикулярна к траектории частицы.

Согласно второму закону Ньютона, эта сила создаёт центростремительное ускорение. Поэтому частица будет двигаться по окружности, радиус которой определяется из условия:

Движение заряда по окружности в магнитном поле, Движение заряда по окружности в магнитном поле, Движение заряда по окружности в магнитном поле,

период вращения частицы, т. е. время, затрачиваемое ею на один полный оборот,

Движение заряда по окружности в магнитном поле

в) Если скорость заряженной частицы направлена под углом Движение заряда по окружности в магнитном полек вектору Движение заряда по окружности в магнитном полето её движение можно представить в виде двух движений: 1) равномерного прямолинейного движения вдоль поля, 2) равномерного движения по окружности в плоскости перпендикулярной полю (Рис. 23).

Движение заряда по окружности в магнитном поле

В результате этих двух движений возникает движение по винтовой линии, ось которой параллельна вектору Движение заряда по окружности в магнитном поле. Шаг винтовой линии:

Движение заряда по окружности в магнитном поле

Движение заряда по окружности в магнитном поле

Направление, в котором закручивается частица, зависит от знака её заряда.

Действие магнитного поля на движущиеся заряженные частицы. Действие магнитного поля на проводник с током означает, что магнитное поле действует на движущиеся электрические заряды. Найдем силу, действующую на электрический заряд q при его движении в однородном магнитном поле с индукцией Движение заряда по окружности в магнитном поле.
Сила тока I в проводнике связана с концентрацией n свободных заряженных частиц, скоростью Движение заряда по окружности в магнитном полеих упорядоченного движения и площадью S поперечного сечения проводника следующим выражением:

Движение заряда по окружности в магнитном поле,(1)

где q — заряд отдельной частицы.

Движение заряда по окружности в магнитном поле.

Так как произведение nSl равно числу свободных заряженных частиц в проводнике длиной l

то сила, действующая со стороны магнитного поля на одну заряженную частицу, движущуюся со скоростью Движение заряда по окружности в магнитном полепод углом Движение заряда по окружности в магнитном полек вектору Движение заряда по окружности в магнитном полеиндукции, равна

Движение заряда по окружности в магнитном поле.(2)

Эту силу называют силой Лоренца.
Направление вектора силы Лоренца Движение заряда по окружности в магнитном полеопределяется правилом левой руки, в нем за направление тока нужно брать направление вектора скорости положительного заряда (рис. 186). Для случая движения отрицательно заряженных частиц четыре пальца следует располагать противоположно направлению вектора скорости.

Движение заряда по окружности в магнитном поле

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью Движение заряда по окружности в магнитном полеперпендикулярно линиям индукции магнитного поля, действует сила Движение заряда по окружности в магнитном поле, постоянная по модулю и направленная перпендикулярно вектору скорости Движение заряда по окружности в магнитном поле(рис. 187).

Движение заряда по окружности в магнитном поле

В вакууме под действием силы Лоренца Движение заряда по окружности в магнитном полечастица приобретает центростремительное ускорение

Движение заряда по окружности в магнитном поле(3)

и движется по окружности. Радиус r окружности, по которой движется частица, определяется из условия

Движение заряда по окружности в магнитном поле, Движение заряда по окружности в магнитном поле.(4)

Период обращения частицы в однородном магнитном поле равен

Движение заряда по окружности в магнитном поле.(5)

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле при постоянной массе не зависит от скорости Движение заряда по окружности в магнитном полеи радиуса r траектории ее движения. Этот факт используется, например, в ускорителе заряженных частиц — циклотроне.

Циклотрон. В этом ускорителе заряженные частицы — протоны, ядра атомов гелия — разгоняются переменным электрическим полем постоянной частоты в вакууме в зазоре между двумя металлическими электродами — дуантами. Дуанты находятся между полюсами постоянного электромагнита (рис. 188, а).

Движение заряда по окружности в магнитном поле

Под действием магнитного поля внутри дуантов заряженные частицы движутся по окружности. К моменту времени, когда они совершают половину оборота и подходят к зазору между дуантами, направление вектора напряженности электрического поля между дуантами изменяется на противоположное и частицы вновь испытывают ускорение. Каждую следующую половину оборота частицы пролетают по окружности все большего радиуса (рис. 188, б), но период их обращения остается неизменным. Поэтому для ускорения частиц на дуанты подается переменное напряжение с постоянным периодом.
Ускорение частиц в циклотроне с постоянным периодом возможно лишь до значений скоростей, значительно меньших скорости света. С приближением скорости частицы к скорости света в вакууме, равной c = 300000 км/с, масса частицы возрастает, вследствие чего увеличивается период ее обращения в магнитном поле. Равенство периода обращения частицы и периода изменения электрического поля нарушается, ускорение прекращается.

топлива по сравнению с обычной тепловой электростанцией.

В заключение, по традиции, предлагаем Вашему вниманию шпаргалку по этой теме:

Видео:Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном поле

Движение заряженной частицы в магнитном поле: формулы. Движение заряженных частиц в однородном магнитном поле

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Видео:Движение заряженной частицы в магнитном поле 2021-1Скачать

Движение заряженной частицы в магнитном поле    2021-1

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Видео:Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой АрхиповымСкачать

Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой Архиповым

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Видео:Движение электронов в магнитном поле - Сила ЛоренцаСкачать

Движение электронов в магнитном поле - Сила Лоренца

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

Движение заряда по окружности в магнитном поле

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Видео:Движение заряженных частиц в магнитном полеСкачать

Движение заряженных частиц в магнитном поле

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

Движение заряда по окружности в магнитном поле

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

Движение заряда по окружности в магнитном поле

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

Движение заряда по окружности в магнитном поле

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Видео:Движение заряда по спирали в магнитном полеСкачать

Движение заряда по спирали в магнитном поле

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у 2 + νz 2 ).

Движение заряда по окружности в магнитном поле

Видео:Положительно заряженная частица в магнитном и электрическом поле. Выполнялка 36Скачать

Положительно заряженная частица в магнитном и электрическом поле. Выполнялка 36

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

Движение заряда по окружности в магнитном поле

Видео:Действие магнитного поля на движущийся заряд. Сила Лоренца | Физика 11 класс #3 | ИнфоурокСкачать

Действие магнитного поля на движущийся заряд. Сила Лоренца | Физика 11 класс #3 | Инфоурок

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

Движение заряда по окружности в магнитном поле

Видео:Альфа частица движется по окружности в однородном магнитном полеСкачать

Альфа частица движется по окружности в однородном магнитном поле

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

Движение заряда по окружности в магнитном поле

Видео:55. Движение частиц в электромагнитных поляхСкачать

55. Движение частиц в электромагнитных полях

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

Движение заряда по окружности в магнитном поле

и затем, используя уравнение v=E/B, мы находим, что

Движение заряда по окружности в магнитном поле

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Видео:Билеты №25, 26 "Движение зарядов в поле"Скачать

Билеты №25, 26 "Движение зарядов в поле"

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

Движение заряда по окружности в магнитном поле

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т — время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один «удар» через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы — ν = qBR /m. Следовательно, ее кинетическая энергия

Движение заряда по окружности в магнитном поле

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Видео:Движение заряженной частицы в магнитном поле | 16 задание ЕГЭ | Магнитные поля в ЕГЭ по физикеСкачать

Движение заряженной частицы в магнитном поле | 16 задание ЕГЭ | Магнитные поля в ЕГЭ по физике

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

Видео:19.2 Движение частицы в магнитном полеСкачать

19.2 Движение частицы в магнитном поле

5.3. Движение заряда в однородном магнитном поле

Если начальная скорость заряженной частицы v перпендикулярна магнитному полю В, то в этом случае частица под действием силы Лоренца будет двигаться по окружности постоянного радиуса R (рис. 5.13)

Движение заряда по окружности в магнитном поле

Движение заряда по окружности в магнитном поле

Рис. 5.13. Движение отрицательно заряженной частицы в однородном магнитном поле

Сила Лоренца FL, направленная по радиусу к центру окружности, вызывает радиальное ускорение. По второму закону Ньютона имеем

Движение заряда по окружности в магнитном поле

следовательно, можем записать уравнение

Движение заряда по окружности в магнитном поле

из которого легко получить выражение для угловой скорости частицы

Движение заряда по окружности в магнитном поле

Если q, m и B — постоянные величины, то угловая скорость, а следовательно, и период

Движение заряда по окружности в магнитном поле

тоже являются постоянными величинами, не зависящими от энергии частицы. От скорости движения частицы зависит только радиус орбиты

Движение заряда по окружности в магнитном поле

Сила Лоренца создает только нормальное ускорение и, соответственно, направлена к центру окружности. Следовательно, направление вращения положительно заряженной частицы таково, что вращающийся в том же направлении винт будет двигаться против направления поля. Отрицательно заряженная частица вращается в противоположном направлении (см. рис. 5.14, 5.15).

Движение заряда по окружности в магнитном поле

Рис. 5.14. Движение положительно и отрицательно заряженных частиц в однородном магнитном поле.
Направление магнитного поля указано точками

Если начальная скорость частицы параллельна вектору магнитной индукции, то сила Лоренца равна нулю. Частица будет продолжать двигаться в том же направлении прямолинейно и равномерно.

Наконец, в общем случае можно представить себе, что частица влетает в область однородного магнитного поля со скоростью v, составляющей угол q с направлением магнитного поля. Эту скорость можно разложить на компоненту две составляющих, одна из которых

Движение заряда по окружности в магнитном поле

направлена вдоль поля, а вторая

Движение заряда по окружности в магнитном поле

перпендикулярна полю. Соответственно, движение частицы является суммой двух движений: равномерного вдоль поля со скоростью Движение заряда по окружности в магнитном полеи вращения по окружности с угловой скоростью Движение заряда по окружности в магнитном поле. Траектория частицы, таким образом, является спиралью с радиусом R и шагом h (рис. 5.15):

Движение заряда по окружности в магнитном поле

Движение заряда по окружности в магнитном поле

Рис. 5.15. Движение заряженной частицы по спирали в однородном магнитном поле

Пример. В однородном магнитном поле с индукцией 2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом 10 см и шагом 60 см. Определить скорость и кинетическую энергию протона. Какую ускоряющую разность потенциалов U прошел протон перед тем, как влететь в магнитное поле?

Решение. Из уравнений (5.11) находим угол между скоростью протона и полем

Движение заряда по окружности в магнитном поле

Движение заряда по окружности в магнитном поле

Кинетическая энергия протона будет

Движение заряда по окружности в магнитном поле

Мы могли использовать нерелятивистскую формулу для энергии, так как скорость протона много меньше скорости света.

Если протон ускорялся электрическим полем, то при прохождении разности потенциалов U он приобрел энергию eU. Отсюда находим разность потенциалов

Движение заряда по окружности в магнитном поле

Джоуль — слишком большая энергия в мире элементарных частиц. Здесь используют внесистемную единицу — электронвольт (эВ).

Электрон-вольт (эВ) — это внесистемная единица энергии, численно равная энергии, которую приобретает электрон, пройдя ускоряющую разность потенциалов 1 В

Движение заряда по окружности в магнитном поле

Она удобна тем, что любая другая частица с зарядом по модулю равным заряду электрона, ускоренная разностью потенциалов в 3,66 МэВ, как в нашем примере, имеет кинетическую энергию 3,66 МэВ (мегаэлектронвольт).

🎦 Видео

Движение заряженной частицы в поперечном магнитном полеСкачать

Движение заряженной частицы в поперечном магнитном поле

Степаньянц К. В. - Теоретическая механика I - Движение заряженных частиц в магнитном полеСкачать

Степаньянц К. В. - Теоретическая механика I - Движение заряженных частиц в магнитном поле

Парфенов К.В. - Олимпиадная физика для 11-го класса - 9. Движение зарядов в магнитном полеСкачать

Парфенов К.В. - Олимпиадная физика для 11-го класса - 9. Движение зарядов в магнитном поле

26 задание ЕГЭ Движение частицы в магнитном поле | ЕГЭ по физике| Физика 11 классСкачать

26 задание ЕГЭ Движение частицы в магнитном поле | ЕГЭ по физике| Физика 11 класс

Магнитное поле движущихся зарядов 1980 гСкачать

Магнитное поле движущихся зарядов 1980 г

Движение заряженной частицы по винтовой линии (задача).Скачать

Движение заряженной частицы по винтовой линии (задача).

ЕГЭ Физика 205F4D В постоянном магнитном поле заряженная частица движется по окружностиСкачать

ЕГЭ Физика 205F4D В постоянном магнитном поле заряженная частица движется по окружности
Поделиться или сохранить к себе: