Движение шарика по окружности в вертикальной плоскости

Неравномерное движение по окружности в вертикальной плоскости

1. Груз, подвешенный на нити и стержне

Шарик массой m подвешен в точке O на нити длиной l (рис. 33.1). Отведем его на угол 90′ и отпустим без толчка. Шарик начнет двигаться по окружности.
Движение шарика по окружности в вертикальной плоскости
Обозначим Движение шарика по окружности в вертикальной плоскостискорость, с которой шарик проходит положение равновесия (рис. 33.2).
Движение шарика по окружности в вертикальной плоскости

? 1. Используя рисунок 33.2, ответьте на вопросы:
а) Какие силы показаны на рисунке?
б) Как направлено ускорение шарика?
в) Выразите модуль равнодействующей через модули показанных сил.

? 2. Перенесите в тетрадь рисунок 33.2, укажите на нем ускорение шарика и объясните смысл следующих уравнений:

Движение шарика по окружности в вертикальной плоскости

? 3. Шарик массой 100 г подвешен на нити длиной 1 м. Его отклоняют на 90º и отпускают без толчка.
а) Чему равна сила натяжения нити, когда шарик проходит положение равновесия?
б) Во сколько раз вес шарика при прохождении положения равновесия больше силы тяжести?
Подсказка. Чтобы найти силу натяжения нити, удобно разделить уравнение (2) иа уравнение (1). Вспомните определение веса тела.

Итак, в данном случае при прохождении шариком положения равновесия нить должна выдержать «тройной вес»!

Сообщим шарику в нижней точке такую скорость Движение шарика по окружности в вертикальной плоскостин, чтобы он двигался в вертикальной плоскости по окружности (рис. 33.3).
Движение шарика по окружности в вертикальной плоскости

На рисунке показаны последовательные положения шарика через равные промежутки времени (их можно зафиксировать, например, с помощью видеосъемки).

? 4. Почему в верхней части рисунка расстояния между последовательными положениями шарика меньше?

? 5. Сделайте в тетради чертеж, на котором изобразите:
а) силы, действующие на шарик в верхней и нижней точках окружности (обозначьте Движение шарика по окружности в вертикальной плоскостив и Движение шарика по окружности в вертикальной плоскостин силы натяжения нити в этих точках);
б) ускорение шарика в этих точках. В верхней точке ускорение направлено вниз, а в нижней – вверх.

? 6. Объясните смысл следующих уравнений:

Движение шарика по окружности в вертикальной плоскости

? 7. Подвешенный на нити шарик массой 100 г вращается в вертикальной плоскости. Насколько больше сила натяжения нити, когда шарик проходит положение равновесия, чем когда он находится в верхней точке окружности?
Подсказка. Удобно вычесть уравнение (4) из уравнения (б) и сравнить полученное уравнение с уравнением (3).

«Шестикратный вес»

Шарик движется но окружности при условии, что нить натянута. Поэтому минимальная скорость, которую нужно сообщить шарику в нижней точке, чтобы он стал двигаться по окружности„должна быть такой, чтобы сила натяжения нити обратилась в нуль только в верхней точке окружности.

? 8. Шарику, подвешенному на нити длиной l, сообщили в нижней точке минимальную горизонтальную скорость, необходимую для того, чтобы он начал двигаться по окружности. Сделайте чертеж, на котором изобразите силы, действующие на шарик в верхней и нижней точках окружности. Чему в этом случае равны:
а) скорость шарика в верхней точке окружности?
б) ускорение шарика в верхней точке окружности?
в) скорость шарика в нижней точке окружности?
г) вес шарика в нижней точке окружности?
Подсказка. Воспользуйтесь уравнениями (3)–(5).

Итак, когда груз проходит нижнюю точку, нить должна выдерживать шестикратный вес груза!

В какой точке шарик сойдет с окружности?

Пусть теперь скорость шарика в нижней точке недостаточна для того, чтобы он мог совершить полный оборот.

В таком случае есть две возможности.

1) Шарик не поднимется выше точки подвеса О. Тогда он начнет колебаться между крайними положениями (рис. 33.4).
Движение шарика по окружности в вертикальной плоскости

2) Шарик поднимется выше точки подвеса, но сила натяжения нити обратится в некоторой точке А в нуль (рис. 33.5). После этого шарик будет двигаться по параболе, показанной красным пунктиром. Когда шарик находится в точке А, центростремительное ускорение ему сообщает только составляющая силы тяжести, направленная вдоль радиуса к центру окружности. На рисунке показано, как найти модуль этой составляющей (отрезок зеленого цвета).
Движение шарика по окружности в вертикальной плоскости

? 9. Шарику массой m, подвешенному на нити длиной l, сообщают горизонтальную начальную скорость v0. Когда шарик находится на высоте h, сила натяжения нити обращается в нуль. Обозначим скорость шарика в этот момент. Используя рисунок 33.6:
а) объясните смысл уравнений
Движение шарика по окружности в вертикальной плоскости Движение шарика по окружности в вертикальной плоскости
б) выразите h через l и альфа.

? 10. Шарику массой 200 г, подвешенному на нити длиной 50 см, сообщают горизонтальную скорость 4 м/с.
а) До какой высоты (по отношению к положению равновесия) шарик будет двигаться по окружности?
б) Чему будет равна сила натяжения нити, когда шарик будет находиться на одной горизонтали с точкой подвеса?
Подсказка. Когда шарик находится на одной горизонтали с точкой подвеса, центростремительное ускорение шарику сообщает только сила натяжения нити.

? 11. Небольшая шайба массой m лежит внутри закрепленного цилиндра. Ось цилиндра горизонтальна (рис. 33.7). Внутренний радиус цилиндра 30 см, стенки цилиндра гладкие. Какую скорость v0 надо сообщить шайбе перпендикулярно оси цилиндра, чтобы она:
а) совершила полный оборот, двигаясь по окружности?
б) оторвалась от поверхности цилиндра на высоте 40 см?
Движение шарика по окружности в вертикальной плоскости
Подсказки. Движение шайбы в цилиндре отличается от движения подвешенного на нити шарика только тем, что роль силы натяжения нити играет сила нормальной реакции, а длину нити l надо заменить на радиус цилиндра r.

Груз, подвешенный на стержне

Рассмотрим теперь вращение груза, подвешенного на легком стержне (массой стержня можно пренебречь). В отличие от нити стержень сохраняет форму и поэтому не дает грузу сойти с окружности. По этой причине минимально возможная скорость груза в верхней точке равна нулю.

? 12. Шарик подвешен на легком стержне длиной l, который может вращаться без трения вокруг точки подвеса O.
а) Какова минимально возможная скорость шарика в верхней точке траектории?
б) Какую минимальную скорость надо сообщить шарику в нижней точке, чтобы он совершил полный оборот?
в) Чему равен вес шарика в нижней точке?

Итак, подвешенному на стержне шарику надо сообщить меньшую начальную скорость, чтобы он сделал полный оборот, чем в случае, когда шарик подвешен на нити той же длины.

2. Движение по «мертвой петле»

Рассмотрим движение тела в вертикальной плоскости по гладкому желобу, переходящему в окружность (рис. 33.8). По аналогии с фигурой высшего пилотажа, когда самолет совершает круговой виток в вертикальной плоскости, такое движение называют иногда мертвой петлей.
Движение шарика по окружности в вертикальной плоскости
Движение по круговому желобу очень похоже на рассмотренное выше движение подвешенного на нити груза. Роль действующей на груз силы натяжения нити Движение шарика по окружности в вертикальной плоскостииграет теперь сила нормальной реакции Движение шарика по окружности в вертикальной плоскости, направленная тоже по радиусу к центру окружности. А моменту, когда сила натяжения нити обращается в нуль, соответствует момент, когда тело отрывается от желоба.

? 13. Небольшая шайба массой m соскальзывает с высоты H по гладкому наклонному желобу, переходящему в окружность радиусом r, и движется по окружности, не отрываясь от желоба. Обозначим Движение шарика по окружности в вертикальной плоскостив силу нормальной реакции, действующую на шайбу в верхней точке окружности. Скорость шайбы в этот момент обозначим v.
а) Сделайте чертеж, на котором изобразите силы, действующие на шайбу в верхней и нижней точках окружности.
б) Объясните смысл следующих уравнений:
Движение шарика по окружности в вертикальной плоскости

? 14. Чему равна минимальная высота Hmin, с которой должна соскальзывать шайба, чтобы она могла совершить полный оборот?
Подсказка. В этом случае Nв обращается в нуль в верхней точке окружности.

Если начальная высота шайбы H меньше, чем Hmin, то в некоторой точке шайба оторвется от желоба. В этой точке сила нормальной реакции обращается в нуль.

? 15. Небольшая шайба массой m соскальзывает с высоты H по гладкому желобу, переходящему в окружность радиусом r, и отрывается от желоба на высоте h (по отношению к нижней точке окружности). Скорость шайбы в этот момент обозначим v.
а) Сделайте чертеж, на котором изобразите силы, действующие на шайбу в момент отрыва от желоба.
б) Используя этот чертеж, объясните смысл уравнений
Движение шарика по окружности в вертикальной плоскости

? 16. Небольшая шайба массой 50 г соскальзывает с некоторой высоты H по гладкому желобу, переходящему в окружность радиусом 30 см, и отрывается от желоба на высоте 40 см (по отношению к нижней точке окружности).
а) Чему равно H?
б) С какой силой шайба давит на желоб, когда она находится на одной горизонтали с центром окружности?

З. Соскальзывание с полусферы

Пусть на вершине гладкой полусферы радиусом г, укрепленной на столе, лежит небольшая шайба массой m (рис. ЗЗ.9). От незначительного толчка шайба начинает соскальзывать.
Движение шарика по окружности в вертикальной плоскости
Пока шайба скользит, действующая на нее сила нормальной реакции уменьшается. В некоторой точке она обратится в нуль – в этот момент шайба оторвется от полусферы (рис. 33.10) и начнет двигаться по параболе (красная пунктирная линия). Обозначим и скорость шайбы в момент отрыва от полусферы.
Движение шарика по окружности в вертикальной плоскости

? 17. Сделайте чертеж, на котором изобразите силы, действующие на шайбу в момент отрыва от полусферы, и направление скорости шайбы в этот момент. Обозначьте h высоту, на которой находится при этом шайба, а α – угол между радиусом, проведенный к шайбе и вертикалью. Используя этот чертеж:
а) объясните смысл уравнений
Движение шарика по окружности в вертикальной плоскости
б) выразите h через r и α.
в) выразите h через r.

? 18. На вершине гладкой сферы лежит небольшая шайба массой m, соединенная нитью с грузом массой M (рис. 33.11). В начальный момент тела покоятся. Их отпускают без толчка. Шайба отрывается от полусферы, когда угол между радиусом, проведенным к шайбе, и вертикалью равен α. Обозначим и модуль скорости тел в момент отрыва.
Движение шарика по окружности в вертикальной плоскости
а) Сделайте чертеж, на котором изобразите силы, действующие на шайбу в момент отрыва от полусферы.
Подсказка. В момент отрыва на шайбу действуют только сила тяжести и сила натяжения нити, направленная по касательной к окружности.
б) Насколько опустилась шайба и насколько опустился груз к моменту отрыва шайбы по сравнению с их начальным положением?
Подсказка. См. рисунок 33.12. Шайба опустилась на расстояние, отмеченное синим отрезком, а груз опустился на расстояние (зеленый отрезок), равное длине дуги, пройденной шайбой до отрыва (зеленый пунктир). Длина дуги равна rα (где α задано в радианах).
Движение шарика по окружности в вертикальной плоскости
в) Используя этот чертеж, объясните смысл уравнений
Движение шарика по окружности в вертикальной плоскости
Подсказка. Действующая на шайбу сила натяжения нити направлена по касательной к окружности. Поэтому центростремительное ускорение шайбе перед самым отрывом сообщает только составляющая действующей на шайбу силы тяжести, направленная по радиусу к центру окружности.
г) Чему равно отношение M/m, если α = π/6?

Дополнительные вопросы и задания

19. Какую скорость можно сообщить шарику в нижней точке, чтобы он начал совершать колебания, если:
а) шарик подвешен на нити длиной l?
б) шарик подвешен на легком стрежне длиной l?
Подсказка. Шарик на нити не должен подняться выше точки подвеса, а шарик на стержне не должен достичь верхней точки окружности.

20. Небольшая шайба массой m соскальзывает с высоты H = 2r по гладкому желобу, переходящему в окружность с радиусом r.
а) На какой высоте h (по отношению к нижней точке окружности) шайба оторвется от желоба?
б) С какой силой шайба давит на желоб, когда она находится на одной горизонтали с центром окружности?

21. На гладкой полусфере радиуса r, укрепленной на столе, лежит небольшая шайба. Ей сообщают начальную горизонтальную скорость v0. На какой высоте h от стола шайба оторвется от полусферы?
Подсказка. Если начальная скорость достаточно велика, шайба оторвется от полусферы сразу.

22. На укрепленной на столе полусфере радиуса r лежит небольшая шайба массой m. От незначительного толчка шайба начинает соскальзывать. Вследствие трения за время, в течение которого шайба скользила по полусфере, выделилось количество теплоты Q.
а) На какой высоте h шайба оторвалась от полусферы?
б) На какой высоте h шайба оторвалась от полусферы, если выделившееся количество теплоты равно кинетической энергии шайбы в момент отрыва?

23. Впервые в мире круговой виток в вертикальной плоскости выполнил русский летчик П. Н. Нестеров в 1913 году. Эту фигуру высшего пилотажа называют мертвой петлей или петлей Нестерова. Нестеров так доверял своим расчетам, что перед выполнением мертвой петли не пристегнулся ремнями к креслу пилота. Расчет летчика оказался правильным: ремни не понадобились! Почему при выполнении мертвой петли летчик не выпадает из кресла пилота в верхней точке траектории?

Видео:Неравномерное движение по окружности в вертикальной плоскостиСкачать

Неравномерное движение по окружности в вертикальной плоскости

Неравномерное движение по окружности в физике — формулы и определение с примерами

Неравномерное движение по окружности:

Вы в 7 классе ознакомились с равномерным движением по окружности. В данной теме мы рассмотрим неравномерное движение по окружности. Вспомним физические величины, которые описывают равномерное движение по окружности (рис. 1.2).

Движение шарика по окружности в вертикальной плоскости

Величина, численно равная пути, пройденному за единицу времени равномерно двигающейся по дуге окружности материальной точкой, называется линейной скоростью и определяется следующим выражением:

Движение шарика по окружности в вертикальной плоскости

2. Отношение угла поворота радиуса окружности при равномерном движении по окружности ко времени поворота называется угловой скоростью:

Движение шарика по окружности в вертикальной плоскости

Угловая скорость, также как и линейная скорость, считается векторной величиной. Ее направление определяется по правилу правого винта. То есть, если головку винта вращать по направлению вращения тела, то поступательное движение его укажет направление вектора углового перемещения, или угловой скорости (рис. 1.3).

Движение шарика по окружности в вертикальной плоскости

В большинстве случаев тела, совершающие вращательные движения, меняют скорость вращения. Например, в начале движения автомобиля до достижения им определенной скорости или в момент торможении до полной остановки, колеса автомобиля совершают вращательные движения с разной скоростью.

Движение, при котором угловая скорость предмета, совершающего вращательное движение, изменяется по времени называется переменным вращательным движением.

Среди переменных вращательных движений встречаются движения, в которых угловая скорость за любые равные промежутки времени меняется на равные значения. Например, колеса автобуса, который приближается к остановке или отъезжает от нее, совершают равнопеременное вращательное движение. В таких движениях ритм изменения угловой скорости описывается физической величиной, называемой угловым ускорением.

Величина, измеряемая отношением изменения угловой скорости ко времени, за которое произошло это изменение, называется угловым ускорением.

Движение шарика по окружности в вертикальной плоскости

Угловое ускорение при равнопеременном движении с течением времени не меняется, так как угловая скорость такого движения тоже меняется за равные промежутки времени на равные значения. Если начальная угловая скорость двигающейся материальной точки равна Движение шарика по окружности в вертикальной плоскости, угловая скорость через промежуток времени Движение шарика по окружности в вертикальной плоскостиравна Движение шарика по окружности в вертикальной плоскости, то изменение угловой скорости будет: Движение шарика по окружности в вертикальной плоскости. Тогда уравнение (1.12) приобретает вид:

Движение шарика по окружности в вертикальной плоскости

Исходя из этого, единица измерения углового ускорения будет равна Движение шарика по окружности в вертикальной плоскости. Из выражения (1.13) можно вывести формулу для определения угловой скорости в любой момент времени:

Движение шарика по окружности в вертикальной плоскости

Если угловая скорость в ходе движения растет равномерно, вращательное движение будет равноускоренным Движение шарика по окружности в вертикальной плоскости(рис. 1.4 а). Если угловая скорость вращательного движения в ходе вращения равномерно уменьшается, такое вращательное движение называется равномерно замедленным Движение шарика по окружности в вертикальной плоскости(рис. 1.4 б).

Движение шарика по окружности в вертикальной плоскости

Из-за того, что при вращательном движении угловая скорость является векторной величиной, угловое ускорение тоже считается векторной величиной. Так как, в формуле (1.13) Движение шарика по окружности в вертикальной плоскостиявляется скалярной величиной. В случае Движение шарика по окружности в вертикальной плоскости, вектор Движение шарика по окружности в вертикальной плоскостии угловое ускорение Движение шарика по окружности в вертикальной плоскостисовпадает с направлением угловой скорости, а в случае Движение шарика по окружности в вертикальной плоскостибудет, Движение шарика по окружности в вертикальной плоскостии вектор Движение шарика по окружности в вертикальной плоскостипротивонаправлен вектору Движение шарика по окружности в вертикальной плоскости.

В уравнении равнопеременного прямолинейного движения достаточно заменить пройденный путь Движение шарика по окружности в вертикальной плоскостина угол поворота Движение шарика по окружности в вертикальной плоскости, скорость Движение шарика по окружности в вертикальной плоскостина угловую скорость Движение шарика по окружности в вертикальной плоскости, ускорение Движение шарика по окружности в вертикальной плоскостина угловое ускорение Движение шарика по окружности в вертикальной плоскостичтобы получить уравнение равномерно изменяющегося вращательного движения. Сопоставление этих уравнений для данных видов движения приводится в следующей таблице:

Движение шарика по окружности в вертикальной плоскости

При вращательном движении встречаются случаи, когда меняется количественная величина линейной скорости материальной точки. В таких случаях в связи с изменением линейной скорости материальной точки возникает ускорение. Из-за того, что это ускорение появилось в результате изменения количественных величин скорости, его направление совпадает с направлением скорости. Поэтому оно называется касательным, т.е. тангенциальным ускорением и его можно выразить формулой:

Движение шарика по окружности в вертикальной плоскости

Таким образом, если меняется линейная скорость материальной точки, совершающей вращательное движение, ее общее ускорение можно определить по формуле:

Движение шарика по окружности в вертикальной плоскости

здесь Движение шарика по окружности в вертикальной плоскости.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Равномерное движение по окружности
  • Взаимная передача вращательного и поступательного движения
  • Движение горизонтально брошенного тела
  • Движение тела, брошенного под углом к горизонту
  • Электромагниты и их применение в физике
  • Колебательный контур в физике
  • Исследовательские методы в физике
  • Вертикальное движение тел в физик

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Неравномерное движение по окружности в вертикальной плоскости (10 класс)Скачать

Неравномерное движение по  окружности в вертикальной плоскости (10 класс)

Асламазов Л.Г. Движение по окружности // Квант

Асламазов Л.Г. Движение по окружности // Квант. — 1972. — № 9. — С. 51-57.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Для описания движения по окружности наряду с линейной скоростью вводят понятие угловой скорости. Если точка при движении по окружности за время Δt описывает дугу, угловая мера которой Δφ, то угловая скорость Движение шарика по окружности в вертикальной плоскости.

Угловая скорость ω связана с линейной скоростью υ соотношением υ = ω·r, где r — радиус окружности, по которой движется точка (рис. 1). Понятие угловой скорости особенно удобно для описания вращения твердого тела вокруг оси. Хотя линейные скорости у точек, находящихся на разном расстоянии от оси, будут неодинаковыми, их угловые скорости будут равны, и можно говорить об угловой скорости вращения тела в целом.

Движение шарика по окружности в вертикальной плоскости

Задача 1. Диск радиуса r катится без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянная и равна υп. С какой угловой скоростью при этом вращается диск?

Каждая точка диска участвует в двух движениях — в поступательном движении со скоростью υп вместе с центром диска и во вращательном движении вокруг центра с некоторой угловой скоростью ω.

Для нахождения ω воспользуемся отсутствием проскальзывания, то есть тем, что в каждый момент времени скорость точки диска, соприкасающейся с плоскостью, равна нулю. Это означает, что для точки А (рис. 2) скорость поступательного движения υп равна по величине и противоположна по направлению линейной скорости вращательного движения υвр = ω·r. Отсюда сразу получаем Движение шарика по окружности в вертикальной плоскости.

Движение шарика по окружности в вертикальной плоскости

Задача 2. Найти скорости точек В, С и D того же диска (рис. 3).

Движение шарика по окружности в вертикальной плоскости

Рассмотрим вначале точку В. Линейная скорость ее вращательного движения направлена вертикально вверх и равна Движение шарика по окружности в вертикальной плоскости, то есть по величине равна скорости поступательного движения, которая, однако, направлена горизонтально. Складывая векторно эти две скорости, находим, что результирующая скорость υB по величине равна Движение шарика по окружности в вертикальной плоскостии образует угол 45º с горизонтом. У точки С скорости вращательного и поступательного движения направлены в одну сторону. Результирующая скорость υC равна 2υп и направлена горизонтально. Аналогично находится и скорость точки D (см. рис. 3).

Даже в том случае, когда скорость точки, движущейся по окружности, не меняется по величине, точка имеет некоторое ускорение, так как меняется направление вектора скорости. Это ускорение называется центростремительным. Оно направлено к центру окружности и равно Движение шарика по окружности в вертикальной плоскости(R — радиус окружности, ω и υ — угловая и линейная скорости точки).

Если же скорость точки, движущейся по окружности, меняется не только по направлению, но и по величине, то наряду с центростремительным ускорением существует и так называемое тангенциальное ускорение. Оно направлено по касательной к окружности и равно отношению Движение шарика по окружности в вертикальной плоскости(Δυ — изменение величины скорости за время Δt).

Задача 3. Найти ускорения точек А, В, С и D диска радиуса r, катящегося без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянна и равна υп (рис. 3).

В системе координат, связанной с центром диска, диск вращается с угловой скоростью ω, а плоскость движется поступательно со скоростью υп. Проскальзывание между диском и плоскостью отсутствует, следовательно, Движение шарика по окружности в вертикальной плоскости. Скорость поступательного движения υп не меняется, поэтому угловая скорость вращения диска постоянная и точки диска имеют только центростремительное ускорение Движение шарика по окружности в вертикальной плоскости, направленное к центру диска. Так как система координат движется без ускорения (с постоянной скоростью υп), то в неподвижной системе координат ускорения точек диска будут теми же.

Перейдем теперь к задачам на динамику вращательного движения. Вначале рассмотрим простейший случай, когда движение по окружности происходит с постоянной скоростью. Так как ускорение тела при этом направлено к центру, то и векторная сумма всех сил, приложенных к телу, должна быть тоже направлена к центру, и по II закону Ньютона Движение шарика по окружности в вертикальной плоскости.

Следует помнить, что в правую часть этого уравнения входят только реальные силы, действующие на данное тело со стороны других тел. Никакой центростремительной силы при движении по окружности не возникает. Этим термином пользуются просто для обозначения равнодействующей сил, приложенных к телу, движущемуся по окружности. Что касается центробежной силы, то она возникает только при описании движения по окружности в неинерциальной (вращающейся) системе координат. Мы пользоваться здесь понятием центростремительной и центробежной силы вообще не будем.

Задача 4. Определить наименьший радиус закругления дороги, которое автомобиль может пройти при скорости υ = 70 км/ч и коэффициенте трения шин о дорогу k =0,3.

На автомобиль действуют сила тяжести Р = m·g, сила реакции дороги N и сила трения Fтp между шинами автомобиля и дорогой. Силы Р и N направлены вертикально и равны по величине: P = N. Сила трения, препятствующая проскальзыванию («заносу») автомобиля, направлена к центру поворота и сообщает центростремительное ускорение: Движение шарика по окружности в вертикальной плоскости. Максимальное значение силы трения Fтр max = k·N = k·m·g, поэтому минимальное значение радиуса окружности, по которой еще возможно движение со скоростью υ, определяется из уравнения Движение шарика по окружности в вертикальной плоскости. Отсюда Движение шарика по окружности в вертикальной плоскости(м).

Сила реакции дороги N при движении автомобиля по окружности не проходит через центр тяжести автомобиля. Это связано с тем, что ее момент относительно центра тяжести должен компенсировать момент силы трения, стремящийся опрокинуть автомобиль. Величина силы трения тем больше, чем больше скорость автомобиля Движение шарика по окружности в вертикальной плоскости. При некотором значении скорости момент силы трения превысит момент силы реакции и автомобиль опрокинется.

Задача 5. При какой скорости автомобиль, движущийся по дуге окружности радиуса R = 130 м, может опрокинуться? Центр тяжести автомобиля находится на высоте h = 1 м над дорогой, ширина следа автомобиля l = 1,5 м (рис. 4).

Движение шарика по окружности в вертикальной плоскости

В момент опрокидывания автомобиля как сила реакции дороги N, так и сила трения Fтp приложены к «внешнему» колесу. При движении автомобиля по окружности со скоростью υ на него действует сила трения Движение шарика по окружности в вертикальной плоскости. Эта сила создает момент относительно центра тяжести автомобиля Движение шарика по окружности в вертикальной плоскости. Максимальный момент силы реакции дороги N = m·g относительно центра тяжести равен Движение шарика по окружности в вертикальной плоскости(в момент опрокидывания сила реакции проходит через внешнее колесо). Приравнивая эти моменты, найдем уравнение для максимальной скорости, при которой автомобиль еще не опрокинется:

Движение шарика по окружности в вертикальной плоскости

Откуда Движение шарика по окружности в вертикальной плоскости≈ 30 м/с ≈ 110 км/ч.

Чтобы автомобиль мог двигаться с такой скоростью, необходим коэффициент трения Движение шарика по окружности в вертикальной плоскости(см. предыдущую задачу).

Аналогичная ситуация возникает при повороте мотоцикла или велосипеда. Сила трения, создающая центростремительное ускорение, имеет момент относительно центра тяжести, стремящийся опрокинуть мотоцикл. Поэтому для компенсации этого момента моментом силы реакции дороги мотоциклист наклоняется в сторону поворота (рис. 5).

Задача 6. Мотоциклист едет по горизонтальной дороге со скоростью υ = 70 км/ч, делая поворот радиусом R = 100 м. На какой угол α к горизонту он должен при этом наклониться, чтобы не упасть?

Сила трения между мотоциклом и дорогой Движение шарика по окружности в вертикальной плоскости, так как она сообщает мотоциклисту центростремительное ускорение. Сила реакции дороги N = m·g. Условие равенства моментов силы трения и силы реакции относительно центра тяжести дает уравнение: Fтp·l·sin α = N·l·cos α, где l — расстояние ОА от центра тяжести до следа мотоцикла (см. рис. 5).

Движение шарика по окружности в вертикальной плоскости

Подставляя сюда значения Fтp и N, находим что Движение шарика по окружности в вертикальной плоскостиили Движение шарика по окружности в вертикальной плоскости. Отметим, что равнодействующая сил N и Fтp при этом угле наклона мотоцикла проходит через центр тяжести, что и обеспечивает равенство нулю суммарного момента сил N и Fтp.

Для того, чтобы увеличить скорость движения по закруглению дороги, участок дороги на повороте делают наклонным. При этом в создании центростремительного ускорения, кроме силы трения, участвует и сила реакции дороги.

Задача 7. С какой максимальной скоростью υ может двигаться автомобиль по наклонному треку с углом наклона α при радиусе закругления R и коэффициенте трения шин о дорогу k?

На автомобиль действуют сила тяжести m·g, сила реакции N, направленная перпендикулярно плоскости трека, и сила трения Fтp, направленная вдоль трека (рис. 6).

Движение шарика по окружности в вертикальной плоскости

Так как нас не интересуют в данном случае моменты сил, действующих на автомобиль, мы нарисовали все силы приложенными к центру тяжести автомобиля. Векторная сумма всех сил должна быть направлена к центру окружности, по которой движется автомобиль, и сообщать ему центростремительное ускорение. Поэтому сумма проекций сил на направление к центру (горизонтальное направление) равна Движение шарика по окружности в вертикальной плоскости, то есть

Движение шарика по окружности в вертикальной плоскости

Сумма проекций всех сил на вертикальное направление равна нулю:

Подставляя в эти уравнения максимальное возможное значение силы трения Fтp = k·N и исключая силу N, находим максимальную скорость Движение шарика по окружности в вертикальной плоскости, с которой еще возможно движение по такому треку. Это выражение всегда больше значения Движение шарика по окружности в вертикальной плоскости, соответствующего горизонтальной дороге.

Разобравшись с динамикой поворота, перейдем к задачам на вращательное движение в вертикальной плоскости.

Задача 8. Автомобиль массы m = 1,5 т движется со скоростью υ = 70 км/ч по дороге, показанной на рисунке 7. Участки дороги АВ и ВС можно считать дугами окружностей радиуса R = 200 м, касающимися друг друга в точке В. Определить силу давления автомобиля на дорогу в точках А и С. Как меняется сила давления при прохождении автомобилем точки В?

Движение шарика по окружности в вертикальной плоскости

В точке А на автомобиль действуют сила тяжести Р = m·g и сила реакции дороги NA. Векторная сумма этих сил должна быть направлена к центру окружности, то есть вертикально вниз, и создавать центростремительное ускорение: Движение шарика по окружности в вертикальной плоскости, откуда Движение шарика по окружности в вертикальной плоскости(Н). Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе реакции. В точке С векторная сумма сил направлена вертикально вверх: Движение шарика по окружности в вертикальной плоскостии Движение шарика по окружности в вертикальной плоскости(Н). Таким образом, в точке А сила давления меньше силы тяжести, а в точке С — больше.

В точке В автомобиль переходит с выпуклого участка дороги на вогнутый (или наоборот). При движении по выпуклому участку проекция силы тяжести на направление к центру должна превышать силу реакции дороги NB1, причем Движение шарика по окружности в вертикальной плоскости. При движении по вогнутому участку дороги, наоборот, сила реакции дороги NВ2 превосходит проекцию силы тяжести: Движение шарика по окружности в вертикальной плоскости.

Из этих уравнений получаем, что при прохождении точки В сила давления автомобиля на дорогу меняется скачком на величину Движение шарика по окружности в вертикальной плоскости≈ 6·10 3 Н. Разумеется, такие ударные нагрузки действуют разрушающе как на автомобиль, так и на дорогу. Поэтому дороги и мосты всегда стараются делать так, чтобы их кривизна менялась плавно.

При движении автомобиля по окружности с постоянной скоростью сумма проекций всех сил на направление, касательное к окружности, должна быть равна нулю. В нашем случае касательная составляющая силы тяжести уравновешивается силой трения между колесами автомобиля и дорогой.

Величина силы трения регулируется вращательным моментом, прикладываемым к колесам со стороны мотора. Этот момент стремится вызвать проскальзывание колес относительно дороги. Поэтому возникает сила трения, препятствующая проскальзыванию и пропорциональная приложенному моменту. Максимальное значение силы трения равно k·N, где k — коэффициент трения между шинами автомобиля и дорогой, N — сила давления на дорогу. При движении автомобиля вниз сила трения играет роль тормозящей силы, а при движении вверх, наоборот, роль силы тяги.

Задача 9. Автомобиль массой m = 0,5 т, движущийся со скоростью υ = 200 км/ч, совершает «мертвую петлю» радиуса R = 100 м (рис. 8). Определить силу давления автомобиля на дорогу в верхней точке петли А; в точке В, радиус-вектор которой составляет угол α = 30º с вертикалью; в точке С, в которой скорость автомобиля направлена вертикально. Возможно ли движение автомобиля по петле с такой постоянной скоростью при коэффициенте трения шин о дорогу k = 0,5?

Движение шарика по окружности в вертикальной плоскости

В верхней точке петли сила тяжести и сила реакции дороги NA направлены вертикально вниз. Сумма этих сил создает центростремительное ускорение: Движение шарика по окружности в вертикальной плоскости. Поэтому Движение шарика по окружности в вертикальной плоскостиН.

Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе NА.

В точке В центростремительное ускорение создается суммой силы реакции и проекции силы тяжести на направление к центру: Движение шарика по окружности в вертикальной плоскости. Отсюда Движение шарика по окружности в вертикальной плоскостиН.

Легко видеть, что NB > NA; с увеличением угла α сила реакции дороги увеличивается.

В точке С сила реакции Движение шарика по окружности в вертикальной плоскостиН; центростремительное ускорение в этой точке создается только силой реакции, а сила тяжести направлена по касательной. При движении по нижней части петли сила реакции будет превышать Движение шарика по окружности в вертикальной плоскостии максимальное значение Движение шарика по окружности в вертикальной плоскостиН сила реакции имеет в точке D. Значение Движение шарика по окружности в вертикальной плоскости, таким образом, является минимальным значением силы реакции.

Скорость автомобиля будет постоянной, если касательная составляющая силы тяжести не превышает максимальной силы трения k·N во всех точках петли. Это условие заведомо выполняется, если минимальное значение Движение шарика по окружности в вертикальной плоскостипревосходит максимальное значение касательной составляющей силы веса. В нашем случае это максимальное значение равно m·g (оно достигается в точке С), и условие Движение шарика по окружности в вертикальной плоскостивыполняется при k = 0,5, υ = 200 км/ч, R = 100 м.

Таким образом, в нашем случае движение автомобиля по «мертвой петле» с постоянной скоростью возможно.

Рассмотрим теперь движение автомобиля по «мертвой петле» с выключенным мотором. Как уже отмечалось, обычно момент силы трения противодействует моменту, приложенному к колесам со стороны мотора. При движении автомобиля с выключенным мотором этого момента нет, и силой трения между колесами автомобиля и дорогой можно пренебречь.

Скорость автомобиля уже не будет постоянной — касательная составляющая силы тяжести замедляет или ускоряет движение автомобиля по «мертвой петле». Центростремительное ускорение тоже будет меняться. Создается оно, как обычно, равнодействующей силы реакции дороги и проекции силы тяжести на направление к центру петли.

Задача 10. Какую наименьшую скорость должен иметь автомобиль в нижней точке петли D (см. рис. 8) для того, чтобы совершить ее с выключенным мотором? Чему будет равна при этом сила давления автомобиля на дорогу в точке В? Радиус петли R = 100 м, масса автомобиля m = 0,5 т.

Посмотрим, какую минимальную скорость может иметь автомобиль в верхней точке петли А, чтобы продолжать двигаться по окружности?

Центростремительное ускорение в этой точке дороги создается суммой силы тяжести и силы реакции дороги Движение шарика по окружности в вертикальной плоскости. Чем меньшую скорость имеет автомобиль, тем меньшая возникает сила реакции NA. При значении Движение шарика по окружности в вертикальной плоскостиэта сила обращается в нуль. При меньшей скорости сила тяжести превысит значение, необходимое для создания центростремительного ускорения, и автомобиль оторвется от дороги. При скорости Движение шарика по окружности в вертикальной плоскостисила реакции дороги обращается в нуль только в верхней точке петли. В самом деле, скорость автомобиля на других участках петли будет большей, и как легко видеть из решения предыдущей задачи, сила реакции дороги тоже будет большей, чем в точке А. Поэтому, если автомобиль в верхней точке петли имеет скорость Движение шарика по окружности в вертикальной плоскости, то он нигде не оторвется от петли.

Теперь определим, какую скорость должен иметь автомобиль в нижней точке петли D, чтобы в верхней точке петли А его скорость Движение шарика по окружности в вертикальной плоскости. Для нахождения скорости υD можно воспользоваться законом сохранения энергии, как если бы автомобиль двигался только под действием силы тяжести. Дело в том, что сила реакции дороги в каждый момент направлена перпендикулярно перемещению автомобиля, а, следовательно, ее работа равна нулю (напомним, что работа ΔA = F·Δs·cos α, где α — угол между силой F и направлением перемещения Δs). Силой трения между колесами автомобиля и дорогой при движении с выключенным мотором можно пренебречь. Поэтому сумма потенциальной и кинетической энергии автомобиля при движении с выключенным мотором не меняется.

Приравняем значения энергии автомобиля в точках А и D. При этом будем отсчитывать высоту от уровня точки D, то есть потенциальную энергию автомобиля в этой точке будем считать равной нулю. Тогда получаем

Движение шарика по окружности в вертикальной плоскости

Подставляя сюда значение Движение шарика по окружности в вертикальной плоскостидля искомой скорости υD, находим: Движение шарика по окружности в вертикальной плоскости≈ 70 м/с ≈ 260 км/ч.

Если автомобиль въедет в петлю с такой скоростью, то он сможет совершить ее с выключенным мотором.

Определим теперь, с какой силой при этом автомобиль будет давить на дорогу в точке В. Скорость автомобиля в точке В опять легко находится из закона сохранения энергии:

Движение шарика по окружности в вертикальной плоскости

Подставляя сюда значение Движение шарика по окружности в вертикальной плоскости, находим, что скорость Движение шарика по окружности в вертикальной плоскости.

Воспользовавшись решением предыдущей задачи, по заданной скорости находим силу давления в точке B:

Движение шарика по окружности в вертикальной плоскостиН.

Аналогично можно найти силу давления в любой другой точке «мертвой петли».

1. Найти угловую скорость искусственного спутника Земли, вращающегося по круговой орбите с периодом обращения Т = 88 мин. Найти линейную скорость движения этого спутника, если известно, что его орбита расположена на расстоянии R = 200 км от поверхности Земли.

2. Диск радиуса R помещен между двумя параллельными рейками. Рейки движутся со скоростями υ1 и υ2. Определить угловую скорость вращения диска и скорость его центра. Проскальзывание отсутствует.

3. Диск катится по горизонтальной поверхности без проскальзывания. Показать, что концы векторов скоростей точек вертикального диаметра находятся на одной прямой.

4. Самолет движется по окружности с постоянной горизонтальной скоростью υ = 700 км/час. Определить радиус R этой окружности, если корпус самолета наклонен на угол α = 5°.

5. Груз массы m = 100 г, подвешенный на нити длины l = 1 м, равномерно вращается по кругу в горизонтальной плоскости. Найти период обращения груза, если при его вращении нить отклонена по вертикали на угол α = 30°. Определить также натяжение нити.

6. Автомобиль движется со скоростью υ = 80 км/ч по внутренней поверхности вертикального цилиндра радиуса R = 10 м по горизонтальному кругу. При каком минимальном коэффициенте трения между шинами автомобиля и поверхностью цилиндра это возможно?

7. Груз массой m подвешен на нерастяжимой нити, максимально возможное натяжение которой равно 1,5m·g. На какой максимальный угол α можно отклонить нить от вертикали, чтобы при дальнейшем движении груза нить не оборвалась? Чему будет равно при этом натяжение нити в тот момент, когда нить составит угол α/2 с вертикалью?

I. Угловая скорость искусственного спутника Земли Движение шарика по окружности в вертикальной плоскости≈ 0,071 рад/с. Линейная скорость спутника υ = ω·R. где R — радиус орбиты. Подставляя сюда R = R3 + h, где R3 ≈ 6400 км, находим υ ≈ 467 км/с.

2. Здесь возможны два случая (рис. 1). Если угловая скорость диска ω, а скорость его центра υ, то скорости точек, соприкасающихся с рейками, будут соответственно равны

(Мы приняли для определенности, что υ1 > υ2). Решая эти системы, находим:

а)Движение шарика по окружности в вертикальной плоскости

б) Движение шарика по окружности в вертикальной плоскости

Движение шарика по окружности в вертикальной плоскости

3. Скорость любой точки М, лежащей на отрезке ОВ (см. рис. 2), находится по формуле υM = υ + ω·rM, где rM — расстояние от точки М до центра диска О. Для любой точки N, принадлежащей отрезку ОА, имеем: υN = υ – ω·rN, где rN — расстояние от точки N до центра. Обозначим через ρ расстояние от любой точки диаметра ВА до точки А соприкосновения диска с плоскостью. Тогда очевидно, что rM = ρ – R и rN = R – ρ = –(ρ – R). где R — радиус диска. Поэтому скорость любой точки на диаметре ВА находится по формуле: υρ = υ + ω·(ρ – R). Так как диск катится без проскальзывания, то Движение шарика по окружности в вертикальной плоскостии для скорости υρ получаем υρ = ω·ρ. Отсюда следует, что концы векторов скоростей находятся на прямой, выходящей из точки А и наклоненной к диаметру ВА под углом, пропорциональным угловой скорости вращения диска ω.

Движение шарика по окружности в вертикальной плоскости

Доказанное утверждение позволяет нам сделать вывод, что сложное движение точек, находящихся на диаметре ВА, можно в каждый данный момент рассматривать как простое вращение вокруг неподвижной точки А с угловой скоростью ω, равной угловой скорости вращения вокруг центра диска. В самом деле, в каждый момент скорости этих точек направлены перпендикулярно диаметру ВА, а по величине равны произведению ω на расстояние до точки А.

Оказывается, что это утверждение справедливо для любой точки диска. Более того, оно является общим правилом. При любом движении твердого тела в каждый момент существует ось, вокруг которой тело просто вращается — мгновенная ось вращения.

4. На самолет действуют (см. рис. 3) сила тяжести Р = m·g и подъемная сила N, направленная перпендикулярно плоскости крыльев (так как самолет движется с постоянной скоростью, то сила тяги и сила лобового сопротивления воздуха уравновешивают друг друга). Равнодействующая сил Р и N должна быть направлена к центру окружности, по которой движется самолет, и создавать центростремительное ускорение Движение шарика по окружности в вертикальной плоскости. Из рисунка находим:

Движение шарика по окружности в вертикальной плоскостиили Движение шарика по окружности в вертикальной плоскостикм.

Движение шарика по окружности в вертикальной плоскости

5. Равнодействующая силы тяжести Р = m·g и силы натяжения нити Т должна создавать центростремительное ускорение ац = ω 2 ·R, где R = l·sin α — радиус круга, по которому вращается груз. Из рисунка 4 получаем:

m·ω 2 ·R = tg α, откуда Движение шарика по окружности в вертикальной плоскости

Период обращения груза Движение шарика по окружности в вертикальной плоскости

Натяжение нити Движение шарика по окружности в вертикальной плоскости

Движение шарика по окружности в вертикальной плоскости

6. На автомобиль действуют (рис. 5) сила тяжести Р = m·g, сила реакции со стороны цилиндра N и сила трения Fтp. Так как автомобиль движется по горизонтальному кругу, то силы Р и Fтp уравновешивают друг друга, а сила N создает центростремительное ускорение Движение шарика по окружности в вертикальной плоскости. Максимальное значение силы трения связано с силой реакции N соотношением: Fтp = k·N. В результате получаем систему уравнений: Движение шарика по окружности в вертикальной плоскости, из которой находится минимальное значение коэффициента трения Движение шарика по окружности в вертикальной плоскости

Движение шарика по окружности в вертикальной плоскости

7. Груз будет двигаться по окружности радиуса l (рис. 6). Центростремительное ускорение груза Движение шарика по окружности в вертикальной плоскости(υ — скорость груза) создается разностью величин силы натяжения нити Т и проекции силы тяжести m·g направление нити: Движение шарика по окружности в вертикальной плоскости. Поэтому Движение шарика по окружности в вертикальной плоскости, где β — угол, образуемый нитью с вертикалью. По мере того, как груз будет опускаться, его скорость будет расти, а угол β будет уменьшаться. Натяжение нити станет максимальным при угле β = 0 (в тот момент, когда нить будет вертикальной): Движение шарика по окружности в вертикальной плоскости. Максимальная скорость груза υ0 находится по углу α, на который отклоняют нить, из закона сохранения энергии:

Движение шарика по окружности в вертикальной плоскости

Используя это соотношение, для максимального значения натяжения нити получаем формулу: Tmax = m·g·(3 – 2 cos α). По условию задачи Tmах = 2m·g. Приравнивая эти выражения, находим cos α = 0,5 и, следовательно, α = 60°.

Определим теперь натяжение нити при Движение шарика по окружности в вертикальной плоскости. Скорость груза в этот момент также находится из закона сохранения энергии:

Движение шарика по окружности в вертикальной плоскости

Подставляя значение υ1 в формулу для силы натяжения, находим:

📽️ Видео

Урок 90. Движение по окружности (ч.2)Скачать

Урок 90. Движение по окружности (ч.2)

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Движение тела, брошенного вертикально вверх. Невесомость | Физика 9 класс #14 | ИнфоурокСкачать

Движение тела, брошенного вертикально вверх. Невесомость | Физика 9 класс #14 | Инфоурок

Теория движение тела брошенного вертикально вверхСкачать

Теория движение тела брошенного вертикально вверх

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Физика - движение по окружностиСкачать

Физика - движение по окружности

Выполнялка 50. Движение тела по окружностиСкачать

Выполнялка 50. Движение тела по окружности

Движение тела, брошенного под углом к горизонтуСкачать

Движение тела, брошенного под углом к горизонту

Вращение камня в верт. плоскостиСкачать

Вращение камня в верт. плоскости

На конце легкой нити длиной 30 см укреплен шарик. Нить с шариком вращается в вертикальной плоскостиСкачать

На конце легкой нити длиной 30 см укреплен шарик. Нить с шариком вращается в вертикальной плоскости

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Урок 37. Движение тела, брошенного под углом к горизонту (начало)Скачать

Урок 37. Движение тела, брошенного под углом к горизонту (начало)

Урок 87. Движение по наклонной плоскости (ч.1)Скачать

Урок 87. Движение по наклонной плоскости (ч.1)

Физика ЕГЭ | Динамика и кинематика вращательного движения | Движение по окружности | ЕГЭ на 100 !Скачать

Физика ЕГЭ | Динамика и кинематика вращательного движения | Движение по окружности |  ЕГЭ на 100 !

Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Урок 101. Скатывание тела с наклонной плоскостиСкачать

Урок 101. Скатывание тела с наклонной плоскости

Лабораторная работа "Изучение движения шарика по окружности"Скачать

Лабораторная работа "Изучение движения шарика по окружности"

Опыты по физике. Связь гармонического колебания с равномерным движением по окружностиСкачать

Опыты по физике. Связь гармонического колебания с равномерным движением по окружности
Поделиться или сохранить к себе: