В любом треугольнике все три высоты пересекаются в одной точке. Все высоты в остроугольном треугольнике лежат внутри треугольника (как и точка пересечения высот).
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Доказать, что углы BB1C1 и BCC1 равны; углы B1C1С и BB1C равны.
Дано: ΔABC — остроугольный,
Около любого треугольника можно описать окружность. Центр окружности, описанной около прямоугольного треугольника, лежит на середине его гипотенузы. Радиус такой окружности равен половине гипотенузы.
Центр описанной около прямоугольного треугольника BB1C окружности лежит на середине гипотенузы BC, радиус этой окружности равен половине BC.
Центр описанной около прямоугольного треугольника BCC1 окружности — середина гипотенузы BC, радиус равен половине BC.
Значит эти треугольники вписаны в одну и ту же окружность.
Следовательно, точки B, C, B1 и C1лежат на одной окружности.
∠B1C1С=∠B1BC (как вписанные углы, опирающиеся на одну дугу B1C).
Что и требовалось доказать.
То есть решение такого рода задач начинаем с поиска прямоугольных треугольников с общей гипотенузой.
- 2 Comments
- Высота треугольника. Задача Фаньяно
- Высота треугольника. Свойство высоты прямоугольного треугольника
- Расположение высот у треугольников различных типов
- Ортоцентр треугольника
- Расположение ортоцентров у треугольников различных типов
- Ортоцентрический треугольник
- Задача Фаньяно
- Определение и свойства высоты треугольника
- Определение высоты треугольника
- Высота в разных видах треугольников
- Свойства высоты треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- 📽️ Видео
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
2 Comments
Здравствуйте!
во втором случае: Угол ВВ1С — прямой, имелся в виду угол В1ВС, как опирающийся на дугу В1С
Видео:В остроугольном треугольнике ABC проведены две высоты...Скачать
Высота треугольника. Задача Фаньяно
Высота треугольника. Свойство высоты прямоугольного треугольника |
Расположение высот у треугольников различных типов |
Ортоцентр треугольника |
Расположение ортоцентров у треугольников различных типов |
Ортоцентрический треугольник |
Задача Фаньяно |
Видео:Построение высоты в треугольникеСкачать
Высота треугольника. Свойство высоты прямоугольного треугольника
Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).
На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.
Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.
Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).
Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям
Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.
Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Расположение высот у треугольников различных типов
Фигура | Рисунок | Описание |
Остроугольный треугольник | Все высоты остроугольного треугольника лежат внутри треугольника. | |
Прямоугольный треугольник | Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника | |
Тупоугольный треугольник | Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника | |
Остроугольный треугольник | ||
Все высоты остроугольного треугольника лежат внутри треугольника. | ||
Прямоугольный треугольник | ||
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника | ||
Тупоугольный треугольник | ||
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника |
Все высоты остроугольного треугольника лежат внутри треугольника.
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Ортоцентр треугольника
Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.
Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).
Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.
Следовательно, точка B является серединой стороны C1A1 .
Следовательно, точка A является серединой стороны C1B1 .
Следовательно, точка C является серединой стороны B1A1 .
и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.
Теорема 1 доказана.
Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.
У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.
Видео:Построение медианы в треугольникеСкачать
Расположение ортоцентров у треугольников различных типов
Фигура | Рисунок | Описание |
Остроугольный треугольник | ||
Прямоугольный треугольник |