Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
- Отрезки и прямые, связанные с окружностью
- Свойства хорд и дуг окружности
- Теоремы о длинах хорд, касательных и секущих
- Доказательства теорем о длинах хорд, касательных и секущих
- Теорема о бабочке
- Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.
- Задача про две хорды окружности
- 📹 Видео
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Отрезки и прямые, связанные с окружностью
| Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||
| Окружность | ![]() | |||||||||||||||||||||||||||
| Круг | ![]() | |||||||||||||||||||||||||||
| Радиус | ![]() | |||||||||||||||||||||||||||
| Хорда | ![]() | |||||||||||||||||||||||||||
| Диаметр | ![]() | |||||||||||||||||||||||||||
| Касательная | ![]() | |||||||||||||||||||||||||||
| Секущая | ![]() | |||||||||||||||||||||||||||
| Окружность |
![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Свойства хорд и дуг окружности
| Фигура | Рисунок | Свойство |
| Диаметр, перпендикулярный к хорде | ![]() | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. |
| Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
| Равные хорды | ![]() | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. |
| Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
| Две хорды разной длины | ![]() | Большая из двух хорд расположена ближе к центру окружности. |
| Равные дуги | ![]() | У равных дуг равны и хорды. |
| Параллельные хорды | ![]() | Дуги, заключённые между параллельными хордами, равны. |
| Диаметр, перпендикулярный к хорде |
![]() |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Большая из двух хорд расположена ближе к центру окружности.

У равных дуг равны и хорды.

Дуги, заключённые между параллельными хордами, равны.
Видео:Задание 25 В круге проведены две перпендикулярные хордыСкачать

Теоремы о длинах хорд, касательных и секущих
| Фигура | Рисунок | Теорема | ||||||||||||||||
| Пересекающиеся хорды | ![]() | |||||||||||||||||
| Касательные, проведённые к окружности из одной точки | ![]() | |||||||||||||||||
| Касательная и секущая, проведённые к окружности из одной точки | ![]() | |||||||||||||||||
| Секущие, проведённые из одной точки вне круга | ![]() | |||||||||||||||||
| Пересекающиеся хорды | ||
![]() | ||
| Касательные, проведённые к окружности из одной точки | ||
![]() | ||
| Касательная и секущая, проведённые к окружности из одной точки | ||
![]() | ||
| Секущие, проведённые из одной точки вне круга | ||
![]() | ||
| Пересекающиеся хорды |
![]() |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:Окружность. 7 класс.Скачать

Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:Радиус перпендикулярный хорде делит ее пополамСкачать

Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
Видео:Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.
Пусть O — центр окружности, AB и CD — данные хорды, не являющиеся диаметрами, M и N — их середины, K — точка пересечения хорд. Прямая ON проходит через середину хорды CD, поэтому ON 


Из равенства прямоугольных треугольников OMK и KNO (по гипотенузе и острому углу) следует, что KN = MO, значит, прямоугольные треугольники KOM и NMO равны по двум катетам. Следовательно, OK = MN.
Пусть O — центр окружности, AB и CD — данные хорды, M и N — их середины, K — точка пересечения хорд. Четырёхугольник OMKN — прямоугольник, следовательно, его диагонали OK и MN равны между собой.
Видео:Математика. Перпендикулярные хордыСкачать

Задача про две хорды окружности
В видео-уроке показан пример решения задачи по геометрии из ГИА (ОГЭ). Задана окружность, в которой проведены две взаимно перпендикулярные хорды. Необходимо найти расстояние от центра окружности до каждой из хорд. Делается рисунок по условию задачи. Используется понятие хорды — отрезок, соединяющий две точки кривой. Рассматривается четырёхугольник, предполагая, что в данной задачи он является прямоугольником. После рассматривается равенство двух треугольников. Находят стороны. Возвращаясь к четырёхугольнику, делается вывод, что он является квадратом. Записывается ответ. Данный видео-урок предназначен для закрепления знаний учащихся по планиметрии.
📹 Видео
Окружность, диаметр, хорда геометрия 7 классСкачать

Задание 24 Две пересекающиеся окружностиСкачать

Окружнось. Зависимость длины хорды, от длины дуги.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Теорема об отрезках хорд и секущихСкачать

Геометрия В окружности проведены две хорды AB = a и AC = b. длина дуги AC вдвое больше длины дуги ABСкачать

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать

Математика ЕГЭ. С2. Два перпендикулярных сечения шара с общей хордойСкачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Геометрия.Две хорды и окружность.ДиаметрСкачать

Задача на нахождение длины хорды окружностиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать

Отрезки и прямые, связанные с окружностью



































