В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи. Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.
Основные свойства площадей.
Свойство №1
Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться.
Доказательство: Рассмотрим ▲ ABC и ▲ ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h — высоте ▲ ABC и ▲ ADC . Если площадь треугольника находится по формуле $$S = frac cdot a cdot h$$, то $$S_ = S_ = frac cdot AC cdot h$$.
Свойство №2
Доказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b. Рассмотрим отношение площадей этих треугольников $$frac<S_><S_>= frac<frac cdot a cdot h_><frac cdot b cdot h_>$$. Упростив, получим $$frac<S_><S_>= frac$$.
Свойство №3
Если два треугольника имеют общий угол, то их площади относятся как произведение сторон, заключающих этот угол.
Доказательство: Рассмотрим ▲ABC и ▲MBN с общим углом B , где AB = a, BC = b, MB = a1и NB = b1. Пусть S1 = SMBN и S2 = SABC . Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$, рассмотрим отношение площадей ▲ABC и ▲MBN .
Свойство №4
Отношение площадей подобных треугольников равны квадрату коэффициента подобия.
Доказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$angle ABC = angle MBN$$. Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$frac<S_><S_> = frac<frac cdot AB cdot BC cdot sin B><frac cdot MB cdot NB cdot sin B>= frac = k^$$ .
Медиана треугольника делит его на две равновеликие части.
Доказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = fracAC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = fraccdot a cdot h$$. Получим $$S_ = fraccdot AM cdot h$$ и $$S_ = fraccdot MC cdot h$$. Значит $$S_ = S_$$.
Свойство №6
Медианы треугольника делят его на три равновеликие части.
Доказательство: Рассмотрим ▲ABC . Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB , ▲BOC , ▲AOC . Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK , они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK — медиана, значит площади треугольников ▲AOK и ▲COK равны. Отсюда следует, что S1 = S2 . Аналогично можно доказать, что S2 = S3 и S3 = S1 .
Средние линии треугольника площади S отсекают от него треугольники площади .
Доказательство: Рассмотрим ▲ABC . NM — средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_ = frac cdot NM cdot h_= frac(frac cdot AC)(fraccdot h) = fraccdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC .
Медианы треугольника делят его на 6 равновеликих частей.
Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать
Подобные треугольники
Видео:Площади треугольников с равным углом.Скачать
Определение
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.
Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.
Видео:Отношение площадей треугольников с равным угломСкачать
Признаки подобия треугольников
I признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
II признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Видео:Задание 26 Отношение площадей Треугольник ЧетырёхугольникСкачать
Свойства подобных треугольников
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Отношение периметров подобных треугольников равно коэффициенту подобия.
Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Видео:Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать
Примеры наиболее часто встречающихся подобных треугольников
1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.
2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
Здесь вы найдете подборку задач по теме «Подобные треугольники» .
Видео:Углы треугольника с площадью 2 и гипотенузой 4Скачать
51. Планиметрия Читать 0 мин.
Видео:Два прямоуголных треугольника в полуокружностиСкачать
51.506. Отношения
Зачастую в геометрических задачах в условии даются отношения отрезков и площадей или отношение отрезков нужно найти. Существует ряд теорем и свойств фигур и их элементов, в которых так или иначе используются отношения.
ОТНОШЕНИЯ ОТРЕЗКОВ:
1. Все медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 к 1, считая от вершины: AO : AM = 2 : 1.
2. Средняя линия треугольника равна половине основания: $MN = fracBC$
3. Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна ее половине $CM = fracAB$
1. Медиана разбивает треугольник на два равновеликих (по площади) треугольника: $S_ = S_ = S$
2. Треугольник делится тремя медианами на шесть равновеликих треугольников:
3. Если площадь треугольника равна S, то площадь треугольника, составленного из его медиан, равна $fracS$
ЛЕММЫ О ПЛОЩАДЯХ ТРЕУГОЛЬНИКА:
Площади подобных фигур относятся как квадрат коэффициента подобия.
Если стороны треугольников с общей вершиной лежат на одной прямой, то их площади относятся как основания.
Если два треугольника имеют общую сторону, то их площади соотносятся как длины отрезков BE и OE.
Если два треугольника имеют общий угол, то их площади соотносятся как произведения соответствующих сторон, прилежащих к этому углу.
Лемма 4 применима даже в том случае, если точки нового треугольника были взяты не на сторонах, а на продолжениях сторон. Пусть точка Е лежит на продолжении стороны AB за вершину В.