Задачи по алгебре. Выпуск 2.
Задача 1. Найти 5А, если
.
Задача 2. Найти А +В, если
.
.
Задача 3. Найти АВ , если
.
Задача 4. Найти транспонированную матрицу относительно матрицы
.
.
Задача 5. Найти , если
.
Задача 6. Найти , если
.
Задача 7. Вычислить определитель
Решение: Разложим определитель по первой строке:
Задача 8. Найти обратную матрицу для матрицы
Определитель нулю не равен, следовательно, обратная матрица существует. Найдем алгебраические дополнения (знаки их учтем сразу), т. е.
Мы сами можем проверить результат, Известно, что . Так ли это?
Получилась единичная матрица. Значит, обратная матрица найдена верно.
Задача 9. Решить систему матричным способом:
Не является ли матрица А вырожденной? Найдем ее определитель: det А =1•[-1•4 – 1•2] – 1•[2•4 – 2•4] + 2•[2•1 – 4•(-1)] = -6 + 12 = 6
Определитель не равен нулю, то есть матрица не вырожденная. Значит, существует обратная матрица
Можно убедиться проверкой в правильности решения: подставим вектор Х в первоначальное матричное уравнение.
Действительно вектор Х удовлетворяет заданной системе.
Задача 10. Решить систему с помощью формул Крамера :
.
Задача 11. Вычислить :
Раскроем скобки и получим:
Так как , то получаем:
Задача 12. Вычислить, пользуясь формулой Муавра:
Представим число z в тригонометрической форме.
, следовательно, а=1, b =1 и .
.
.
Применим формулу Муавра:
,
Задача 13. Выполнить деление с остатком f ( x )= x 3 — x 2 — x на x -1+2 i .
Решение: Составим таблицу, в которой над чертой расположены коэффициенты многочлена f ( x ), под чертой соответствующие коэффициенты частного и остаток, последовательно вычисляемые, а слева сбоку – значение c = 1-2 i в данном примере.
Таким образом: f ( x )= x 3 — x 2 — x =( x -1+2 i ) ( x 2 -2 ix -5-2 i )-9+8 i .
Ответ : f(x)=x 3 -x 2 -x=(x-1+2i) (x 2 -2ix-5-2i)-9+8i.
Задача 14. Применяя процесс ортогонализации, построить ортогональный базис подпространства, натянутого на данную систему векторов.
, ,
;
Задача 15. Проверить, что векторы х = (1, -2, 2, -3), у = (2, -3, 2, 4) ортогональны, и дополнить их до ортогональных базисов.
Решение: Найдем скалярное произведение данных векторов: ( х , у) = 2+6+4-12 = 0 х , у – ортогональны .
Найдем векторы, дополняющие данную систему векторов до ортогонального базиса.
Пусть z = (z1, z2, z 3, z 4) попарно ортогонален с данными векторами, т.е. ( x , z ) = 0 и ( y , z ) = 0. Получаем следующую систему:
Эта система имеет множество решений, например,
Пусть теперь k = ( k 1, k 2, k 3, k 4) попарно ортогонален с векторами x , y , z . Получаем следующую систему:
Эта система имеет множество решений, например,
Таким образом, можно добавить векторы
(2, 2, 1, 0), (-5, 2, 6, 1).
Задача 16. Найти векторы, дополняющие следующую систему векторов и до ортонормированного базиса.
,
,
Пусть z = (z1, z2, z 3) попарно ортогонален с данными векторами, т.е. ( x , z ) = 0 и ( y , z ) = 0. Получаем следующую систему:
Эта система имеет множество решений, например,
Нормируя этот вектор, получим вектор, дополняющий данную систему векторов до ортонормированного базиса:
Задача 17. Доказать, что проектирование трехмерного пространства на координатную плоскость натянутую на вектора e 1, e 2 параллельно оси координат вектора e 3, является линейным преобразованием, и найти его матрицу в базисе e 1, e 2, e 3..
Решение: Пусть L — трёхмерное пространство, e 1, e 2, e 3 — базис L , преобразование — проектирование L на координатную плоскость векторов e 1, e 2 параллельно оси координат вектора e 3.
Пусть х — произвольный вектор L , т.е. x Î L .
Пусть x =( x 1, x 2, x 3) — координаты вектора x в базисе e 1, e 2, e 3, т.е. x = x 1 e 1+ x 2 e 2+ x 3 e 3. Тогда при преобразовании j имеем:
Докажем, что для любых x Î L , y Î L и числа l
1) j ( x+y )= j (x)+ j (y),
2) j ( l x )= l j (x).
j ( l x ) = ( l x 1, l x 2, 0) = l ( x 1, x 2, 0) = l j ( x ) .
Следовательно, j — линейное преобразование.
Найдем матрицу преобразования j в базисе e 1, e 2, e 3. Известно, что координаты образа j ( x ) вектора x при линейном преобразовании выражаются через координаты вектора x в том же базисе при помощи матрицы преобразования A j следующим образом:
.
Откуда следует, что
.
Задача 18. Линейное преобразование φ в базисе е 1 , е2, е3, е4 имеет матрицу
.
Выпишем матрицу перехода от базиса е 1 ,е2,е3,е4 к новому базису:
.
.
Теперь найдем матрицу преобразования В j в новом базисе по формуле В j =Т -1 А j Т.
Задача 19. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей:
Решение: Собственные значения являются корнями характеристического уравнения преобразования j .
Составим характеристическую матрицу:
Найдем определитель матрицы и вычислим корни характеристического уравнения:
= (2 — )(3+ )(2+ )+3-2(3+ )-5(2+ ) =
= +3-6-2 -10-5 =
= 12+4 -3 -7 -13 = ,
Получим собственные значения: или .
Для каждого собственного значения найдем собственный вектор.
По определению имеем: .
Но, в тоже время,
Беря значением = -1, получаем с.л.а .у . :
Собственными векторами будут являться вектора, входящие в фундаментальную систему решений (ф.с.р.) этой с.л.а .у . Найдем ф.с.р. это с.л.а .у .
Таким образом, собственным вектором, отвечающим собственному значению = -1, является вектор .
Задача 20. Найти нормальный вид и невырожденное линейное преобразование, приводящее к этому виду, для следующей квадратичной формы: .
Решение: Ввиду отсутствия в этой форме квадратов неизвестных мы выполним сначала невырожденное линейное преобразование:
,
после чего получим .
, получим, что .
Найдем невырожденное линейное преобразование.
, , .
Задача 21. Следующую квадратичную форму привести к каноническому виду с целыми коэффициентами посредством невырожденного линейного преобразования с рациональными коэффициентами и найти выражение новых неизвестных через старые.
.
Решение: Приведем данную форму к каноническому виду:
= =2 =
= .
,
получим канонический вид квадратичной формы:
.
- Ортогональный и ортонормированный базисы евклидова пространства
- Выражение скалярного произведения через координаты сомножителей
- Преимущества ортонормированного базиса
- Изменение матрицы Грама при переходе от одного базиса к другому
- Свойства определителя Грама
- Изоморфизм евклидовых пространств
- Ортогональные системы векторов
- 📹 Видео
Видео:Ортогональные системы векторов. Процесс ортогонализации (задача 1357)Скачать
Ортогональный и ортонормированный базисы евклидова пространства
Так как евклидово пространство является линейным, на него переносятся все понятия и свойства, относящиеся к линейному пространству, в частности, понятия базиса и размерности.
Базис [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] евклидова пространства называется ортогональным , если все образующие его векторы попарно ортогональны, т.е.
Базис [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] евклидова пространства называется ортонормированным , если его векторы попарно ортогональны и длина каждого из них равна единице:
Теорема 8.5. В конечномерном евклидовом пространстве любую систему ортогональных (ортонормированных) векторов можно дополнить до ортогонального (ортонормированного) базиса.
В самом деле, по теореме 8.2 любую систему линейно независимых векторов, в частности, ортогональную (ортонормированную), можно дополнить до базиса. Применяя к этому базису процесс ортогонализации, получаем ортогональный базис. Нормируя векторы этого базиса (см. пункт 4 замечаний 8.11), получаем ортонормированный базис.
Видео:Ортогональное дополнение. ПримерСкачать
Выражение скалярного произведения через координаты сомножителей
Пусть [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] — базис евклидова пространства, в котором векторы [math]mathbf[/math] и [math]mathbf[/math] имеют координаты [math]x_1,x_2,ldots,x_n[/math] и [math]y_1,y_2,ldots,y_n[/math] соответственно, т.е.
Выразим скалярное произведение, используя следствие 3 из аксиом скалярного произведения:
Преобразуем это выражение, используя операции с матрицами:
y=begin y_1&cdots& y_n end^T[/math] — координатные столбцы векторов [math]mathbf[/math] и [math]mathbf[/math] , a [math]G(mathbf_1,mathbf_2,ldots, mathbf_n)[/math] — квадратная симметрическая матрица, составленная из скалярных произведений
которая называется матрицей Грама системы векторов [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] .
Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать
Преимущества ортонормированного базиса
Для ортонормированного базиса [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] формула (8.32) упрощается, так как из условия (8.31) следует, что матрица Грама [math]G(mathbf_1, mathbf_2,ldots,mathbf_n)[/math] ортонормированной системы [math]mathbf_1, mathbf_2,ldots, mathbf_n[/math] равна единичной матрице: [math]G(mathbf_1, mathbf_2,ldots,mathbf_n)=E[/math] .
1. В ортонормированном базисе [math]mathbf_1,mathbf_2,ldots, mathbf_n[/math] скалярное произведение векторов [math]mathbf[/math] и [math]mathbf[/math] находится по формуле: [math]langle mathbf,mathbfrangle= x_1y_1+x_2y_2+ldots+x_ny_n[/math] , где [math]x_1,ldots,x_n[/math] — координаты вектора [math]mathbf[/math] , а [math]y_1,ldots,y_n[/math] — координаты вектора [math]mathbf[/math] .
2. В ортонормированном базисе [math]mathbf_1,mathbf_2,ldots, mathbf_n[/math] длина вектора [math]mathbf[/math] вычисляется по формуле [math]|mathbf|= sqrt[/math] , где [math]x_1,ldots,x_n[/math] — координаты вектора [math]mathbf[/math] .
3. Координаты [math]x_1,ldots,x_n[/math] вектора [math]mathbf[/math] относительно ортонормированного базиса [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] находятся при помощи скалярного произведения по формулам: [math]x_1=langle mathbf,mathbf_1rangle,ldots, x_n=langle mathbf,mathbf_nrangle[/math] .
В самом деле, умножая обе части равенства [math]mathbf= x_1 mathbf_1+ldots+x_n mathbf_n[/math] на [math]mathbf_1[/math] , получаем
Аналогично доказываются остальные формулы.
Видео:ОртогональностьСкачать
Изменение матрицы Грама при переходе от одного базиса к другому
Пусть [math](mathbf)=(mathbf_1,ldots,mathbf_n)[/math] и [math](mathbf)= (mathbf_1,ldots,mathbf_n)[/math] — два базиса евклидова пространства [math]mathbb[/math] , a [math]S[/math] — матрица перехода от базиса [math](mathbf)[/math] к базису [math](mathbf)colon, (mathbf)=(mathbf)S[/math] . Требуется найти связь матриц Грама систем векторов [math](mathbf)[/math] и [math](mathbf)[/math]
По формуле (8.32) вычислим скалярное произведение векторов [math]mathbf[/math] и [math]mathbf[/math] в разных базисах:
где [math]mathoplimits_<(mathbf)>,, mathoplimits_<(mathbf)>[/math] и [math]mathoplimits_<(mathbf)>,, mathoplimits_<(mathbf)>[/math] — координатные столбцы векторов [math]mathbf[/math] и [math]mathbf[/math] в соответствующих базисах. Подставляя в последнее равенство связи [math]mathoplimits_<(mathbf)>= S mathoplimits_<(mathbf)>,[/math] [math]mathoplimits_<(mathbf)>= S mathoplimits_<(mathbf)>[/math] , получаем тождество
Отсюда следует формула изменения матрицы Грама при переходе от одного базиса к другому :
Записав это равенство для ортонормированных базисов [math](mathbf)[/math] и [math](mathbf)[/math] , получаем [math]E=S^TES[/math] , так как матрицы Грама ортонормированных базисов единичные: [math]G(mathbf_1,ldots,mathbf_n)= G(mathbf_1,ldots,mathbf_n)=E[/math] . Поэтому матрица [math]S[/math] перехода от одного ортонормированного базиса к другому является ортогональной: [math]S^=S^T[/math] .
Видео:Ортогональное дополнение. ТемаСкачать
Свойства определителя Грама
Определитель матрицы (8.33) называется определителем Грама. Рассмотрим свойства этого определителя.
1. Критерий Грама линейной зависимости векторов: система векторов [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] линейно зависима тогда и только тогда, когда определитель Грама этой системы равен нулю.
Действительно, если система [math]mathbf_1, mathbf_2, ldots,mathbf_k[/math] линейно зависима, то существуют такие числа [math]x_1,x_2,ldots,x_k[/math] , не равные нулю одновременно, что
Умножая это равенство скалярно на [math]mathbf_1[/math] , затем на [math]mathbf_2[/math] и т.д. на [math]mathbf_k[/math] , получаем однородную систему уравнений [math]G(mathbf_1,mathbf_2,ldots,mathbf_k)x=o[/math] , которая имеет нетривиальное решение [math]x=beginx_1&cdots&x_k end^T[/math] . Следовательно, ее определитель равен нулю. Необходимость доказана. Достаточность доказывается, проводя рассуждения в обратном порядке.
Следствие. Если какой-либо главный минор матрицы Грама равен нулю, то и определитель Грама равен нулю.
Главный минор матрицы Грама системы [math]mathbf_1, mathbf_2,ldots,mathbf_k[/math] представляет собой определитель Грама подсистемы векторов. Если подсистема линейно зависима, то и вся система линейно зависима.
2. Определитель Грама [math]det<G (mathbf_1,mathbf_2, ldots, mathbf_k)>[/math] не изменяется в процессе ортогонализации системы векторов [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] . Другими словами, если в процессе ортогонализации векторов [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] получены векторы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] , то
Действительно, в процессе ортогонализации по векторам [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] последовательно строятся векторы
После первого шага определитель Грама не изменяется
Выполним с определителем [math]det G(mathbf_1, mathbf_2, ldots,mathbf_k)[/math] следующие преобразования. Прибавим ко второй строке первую, умноженную на число [math](-alpha_)[/math] , а затем ко второму столбцу прибавим первый, умноженный на [math](-alpha_)[/math] . Получим определитель
Так как при этих преобразованиях определитель не изменяется, то
Значит, после второго шага в процессе ортогонализации определитель не изменяется. Продолжая аналогично, получаем после [math]k[/math] шагов:
Вычислим правую часть этого равенства. Матрица [math]G(mathbf_1,mathbf_2,ldots, mathbf_k)[/math] Грама ортогональной системы [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] векторов является диагональной, так как [math]langle mathbf_i,mathbf_jrangle=0[/math] при [math]ine j[/math] . Поэтому ее определитель равен произведению элементов, стоящих на главной диагонали:
3. Определитель Грама любой системы [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] векторов удовлетворяет двойному неравенству
Докажем неотрицательность определителя Грама. Если система [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] линейно зависима, то определитель равен нулю (по свойству 1). Если же система [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] линейно независима, то, выполнив процесс ортогонализации, получим ненулевые векторы [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] , для которых по свойству 2:
Оценим теперь скалярный квадрат [math]langle mathbf_j,mathbf_jrangle[/math] . Выполняя процесс ортого-1нализации, имеем [math]mathbf_j= mathbf_j+ alpha_mathbf_1+ ldots+ alpha_mathbf_[/math] . Отсюда
Следовательно, по свойству 2 имеем
1. Матрица Грама любой системы векторов является неотрицательно определенной, так как все ее главные миноры также являются определителями Грама соответствующих подсистем векторов и неотрицательны в силу свойства 3.
2. Матрица Грама любой линейно независимой системы векторов является положительно определенной, так как все ее угловые миноры положительны (в силу свойств 1,3), поскольку являются определителями Грама линейно независимых подсистем векторов.
3. Определитель квадратной матрицы [math]A[/math] (n-го порядка) удовлетворяет неравенству Адамара :
Действительно, обозначив [math]a_1,a_2,ldots,a_n[/math] столбцы матрицы [math]A[/math] , элементы матрицы [math]A^TA[/math] можно представить как скалярные произведения (8.27): [math]langle a_i,a_jrangle= (a_i)^Ta_j[/math] . Тогда [math]A^TA=G(a_1,a_2,ldots,a_n)[/math] — матрица Грама системы [math]a_1,a_2,ldots,a_n[/math] векторов пространства [math]mathbb^n[/math] . По свойству 3, теореме 2.2 и свойству 1 определителя получаем доказываемое неравенство:
4. Если [math]A[/math] — невырожденная квадратная матрица, то любой главный минор матрицы [math]A^TA[/math] положителен. Это следует из пункта 2, учитывая представление произведения [math]A^TA=G(a_1,ldots,a_n)[/math] как матрицы Грама системы линейно независимых векторов [math]a_1,ldots,a_n[/math] — столбцов матрицы [math]A[/math] (см. пункт 3).
Видео:Образуют ли данные векторы базисСкачать
Изоморфизм евклидовых пространств
Два евклидовых пространства [math]mathbb[/math] и [math]mathbb'[/math] называются изоморфными [math](mathbbleftrightarrow mathbb’)[/math] , если они изоморфны как линейные пространства и скалярные произведения соответствующих векторов равны:
где [math](cdot,cdot)[/math] и [math](cdot,cdot)'[/math] — скалярные произведения в пространствах [math]mathbb[/math] и [math]mathbb'[/math] соответственно.
Напомним, что для изоморфизма конечномерных линейных пространств необходимо и достаточно, чтобы их размерности совпадали (см. теорему 8.3). Покажем, что это условие достаточно для изоморфизма евклидовых пространств (необходимость следует из определения). Как и при доказательстве теоремы 8.3, установим изоморфизм n-мерного евклидова пространства [math]mathbb[/math] с вещественным арифметическим пространством [math]mathbb^n[/math] со скалярным произведением (8.27). В самом деле, взяв в пространстве [math]mathbb[/math] какой-нибудь ортонормированный базис [math](mathbf)=(mathbf_1,ldots,mathbf_n)[/math] , поставим в соответствие каждому вектору [math]mathbfin mathbb[/math] его координатный столбец [math]xin mathbb^n
(mathbfleftrightarrow x)[/math] . Это взаимно однозначное соответствие устанавливает изоморфизм линейных пространств: [math]mathbbleftrightarrow mathbb^n[/math] . В ортонормированном базисе скалярное произведение векторов [math]mathbf[/math] и [math]mathbf[/math] пространства [math]mathbb[/math] находится по формуле
(см. пункт 1 преимуществ ортонормированного базиса). Такое же выражение дает скалярное произведение (8.27) координатных столбцов [math]x[/math] и [math]y[/math] , т.е. скалярные произведения соответствующих элементов равны
Следовательно, евклидовы пространства [math]mathbb[/math] и [math]mathbb^n[/math] изоморфны.
Таким образом, изучение конечномерных евклидовых пространств может быть сведено к исследованию вещественного арифметического пространства [math]mathbb^n[/math] со стандартным скалярным произведением (8.27).
Видео:Ортогональное дополнение (задача 1366)Скачать
Ортогональные системы векторов
Векторное пространство , в котором скалярное произведение векторов и определяется формулой , является евклидовым.
Два вектора и называются ортогональными, если .
Система векторов называется ортогональной, если векторы этой системы попарно ортогональны: при .
Базис -мерного евклидова пространства называется ортогональным, если при .
Каждый вектор единственным образом раскладывается по базису : , где числа называемые координатами вектора в ортогональном базисе , определяются по формулам: ( ).
Ортогональной составляющей вектора относительно ортогональной системы векторов называется вектор , где ( ).
Процессом ортогонализации системы векторов называется построение ортогональной системы ненулевых векторов по формулам: , , ,…, , где — ортогональные составляющие векторов относительно ортогональных систем векторов ( ). Если система векторов линейно зависима, то число векторов в ортогональной системе будет меньше .
1.123 Выяснить будут ли ортогональными следующие системы векторов.
а) ;
б) ;
в) ;
г) .
1.124 Проверить ортогональность систем векторов и дополнить их до ортогональных базисов.
а) ;
б) ;
в) ;
г) .
1.125Найти координаты вектора в ортогональном базисе: , , , .
1.126 Найти координаты вектора в ортогональном базисе: , , .
1.127 Найти ортогональную составляющую вектора относительно ортогональной системы векторов .
а) ;
б) ;
в) ;
г) .
В задачах 1.128-1.133 применяя процесс ортогонализации построить ортогональную систему векторов.
1.128 .
1.129 .
1.130 .
1.131 .
1.132 .
1.133 .
Линейные операторы.
Операторомв (преобразованием пространства ) называется закон, по которому каждому вектору ставится в соответствие единственный вектор , и пишут Оператор называется линейным, если для любых векторов и действительных чисел выполнено условие: .
Если — базис , томатрицей линейного оператора в базисе называется квадратная матрица порядка , столбцами которой являются столбцы координат векторов . Каноническим базисом называется базис , где , , -единичные векторы. Между линейными операторами, действующими в и квадратными матрицами порядка , существует взаимно однозначное соответствие, что позволяет оператор представлять в матричном виде , где — матрицы-столбцы координат векторов , — матрица оператора в базисе .
Для линейных операторов вводятся операции: 1) сложение операторов: ; 2) умножение оператора на число: ; 3) умножение операторов: .
Обратнымк оператору называется оператор такой, что , где — единичный(тождественный) оператор, реализующий отображение . Обратный оператор существует только для невырожденных операторов (операторов, матрица которых является невырожденной). Все, рассмотренные выше, действия над линейными операторами выполняют, выполняя аналогичные действия над их матрицами.
Пусть число и вектор , , таковы, что выполняются равенства: или . Тогда число называется собственным числом линейного оператора (матрицы ), а вектор — собственным вектором оператора (матрицы), соответствующим собственному числу . Равенство может быть записано и в виде , где — единичная матрица порядка , — матрица-столбец координат собственного вектора , соответствующего собственному числу , — нулевая матрица-столбец.
Характеристическим уравнением оператора (матрицы ) называется уравнение: .
Множество собственных чисел оператора (матрицы) совпадает с множеством корней его характеристического уравнения: , а множество собственных векторов, отвечающих собственному числу , совпадает с множеством ненулевых решений матричного уравнения: .
Если квадратная матрица порядка имеет собственные числа кратности , где , то она приводима к диагональному виду тогда и только тогда, когда выполнены условия: ( ). Если нарушается хотя бы одно из условий, то матрица к диагональному виду неприводима.
Приведение матрицы к диагональному виду осуществляется преобразованием: , где — матрица, столбцами которой являются линейно независимых собственных векторов матрицы , отвечающих собственным числам (каждому собственному числу кратности отвечает линейно независимых собственных векторов, образующих фундаментальную систему решений уравнения: ). Матрица при этом будет иметь диагональный вид, причём на главной диагонали будут стоять собственные числа матрицы .
В задачах 1.134-1.138 установить, какие из заданных отображений пространства арифметических векторов в себя являются линейными операторами, и выписать их матрицы в каноническом базисе.
1.134 .
1.135 .
1.136 .
1.137 .
1.138 .
В задачах 1.139-1.143 в пространстве заданы линейные операторы и . Найти матрицу линейного оператора , где и его явный вид в каноническом базисе .
1.139 ,
.
1.140 ,
.
1.141 ,
.
1.142 ,
1.143 .
В задачах 1.144-1.146 установить, какие из заданных в линейных операторов являются невырожденными, и найти явный вид обратных операторов .
1.144 .
1.145 .
1.146 .
В задачах 1.147-1.156 найти собственные числа и собственные векторы линейных операторов,заданных своими матрицами
1.147 . 1.148 .
1.149 . 1.150 .
1.151 . 1.152 .
1.153 . 1.154 .
1.155 . 1.156 .
В задачах 1.157-1.166 выяснить, какие из заданных матриц линейных операторов можно диагонализировать и найти:
а)диагональную форму матрицы; б) матрицу линейного преобразования, приводящего данную матрицу к диагональному виду.
1.157 . 1.158 .
1.159 . 1.160 .
1.161 . 1.162 .
1.163 . 1.164 .
1.165 . 1.166 .
Квадратичные формы.
Квадратичной формой (кратко ) от -переменных называется однородный многочлен второй степени: , где . Квадратичную форму всегда можно записать в матричном виде: , где — матрица квадратичной формы (являющаяся симметрической, так как выполняется условие ), — матрица-столбец, — матрица-строка, составленные из переменных .
Квадратичная форма называется невырожденной, если её матрица — невырожденная. Квадратичная форма называется канонической, если она имеет вид: .
Всякую квадратичную форму всегда можно привести к канонической, например, методами Лагранжа и ортогональных преобразований.
Метод Лагранжа состоит в последовательном выделении в квадратичной форме полных квадратов. Если в квадратичной форме все коэффициенты ( ), а коэффициент ( ), то, до выделения полных квадратов, в квадратичной форме следует перейти к новым переменным по формулам: .
Метод ортогональных преобразований состоит в приведении формы к каноническому виду , где — собственные числа матрицы квадратичной формы. Такое приведение осуществляется с помощью ортогонального преобразования , где — ортогональная матрица, столбцами которой служат ортонормированные собственные векторы матрицы квадратичной формы; — матрицы-столбцы переменных квадратичной формы.
Квадратная матрица называется ортогональной, если её столбцы представляют ортонормированную систему векторов (длина каждого вектора равна единице, все попарные скалярные произведения векторов равны нулю). Квадратная матрица будет ортогональной, тогда и только тогда, когда: .
Квадратичные формы подразделяют на различные типы в зависимости от множества их значений. Квадратичная форма называется:
положительно (отрицательно) определённой, если для любого выполняется неравенство ( ); неотрицательно (неположительно) определённой, если для любого выполняется неравенство ( ), причём существует , для которого ; знакопеременной (или неопределённой), если существуют такие и , что и .
Невырожденная квадратичная форма может быть либо положительно определённой, либо отрицательно определённой, либо знакопеременной. Тип невырожденной квадратичной формы можно определить, проверяя знаки главных миноров матрицы квадратичной формы.
Пусть , где — матрица квадратичной формы. Главными минорами матрицы называются миноры порядка ( ), составленные из первых строк и первых столбцов матрицы: , ,…, .
Одним из критериев знакоопределённости невырожденной квадратичной формы является критерий Сильвестра:
— квадратичная форма положительно определена тогда и только тогда, когда все главные миноры её матрицы положительны, т.е. , , , ;
— квадратичная форма отрицательно определена тогда и только тогда, когда для всех главных миноров её матрицы выполняются неравенства: , , , , (все миноры нечётного порядка отрицательны, а чётного – положительны) ;
— квадратичная форма знакопеременна тогда и только тогда, когда для главных миноров её матрицы выполняется хотя бы одно из условий: один из главных миноров равен нулю, один из главных миноров чётного порядка отрицателен, два главных минора нечётного порядка имеют разные знаки.
1.167 Записать матрицу следующих квадратичных форм:
а) ;
б) ;
в) ;
г) .
В задачах 1.168-1.173 методом Лагранжа найти: а) канонический вид квадратичной формы; б) невырожденное линейное преобразование, приводящее к этому виду.
1.168 .
1.169 .
1.170 .
1.171 .
1.172 .
1.173 .
В задачах 1.174-1.179 найти ортогональное преобразование, приводящее следующие квадратичные формы к каноническому виду, и записать полученный канонический вид.
1.174 .
1.175 .
1.176 .
1.177 .
1.178 .
1.179 .
В задачах 1.180-1.185 определить, используя критерий Сильвестра, какие квадратичные формы являются либо положительно, либо отрицательно определенными, а какие нет.
1.180 . 1.181 .
1.182 .
1.183 .
1.184 .
1.185 .
1.186Найти, используя критерий Сильвестра, все значения параметра , при которых квадратичная форма является положительно определенной:
а) ;
б) ;
в) ;
Г) .
1.187Найти, используя критерий Сильвестра, все значения параметра , при которых квадратичная форма является отрицательно определенной:
а) ;
б) ;
в) ;
📹 Видео
§48 Ортонормированный базис евклидова пространстваСкачать
Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Высшая математика. Линейные пространства. Векторы. БазисСкачать
Ортогональность. ТемаСкачать
Как разложить вектор по базису - bezbotvyСкачать
A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.Скачать
Разложение вектора по базису. 9 класс.Скачать
Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать
Процесс ортогонализации Грама-Шмидта. ПримерСкачать
Найдите разложение вектора по векторам (базису)Скачать
Скалярное произведение. Ортогональный базис.Скачать
Базис линейного пространства (01)Скачать
Линейные комбинации, span и базисные вектора | Сущность Линейной Алгебры, глава 2Скачать