Главная > Учебные материалы > Математика: Планиметрия. Страница 9
1 2 3 4 5 6 7 8 9 10 11 12
Видео:Все типы 24 задание 2 часть ОГЭ ПО МАТЕМАТИКЕ 2023 УмскулСкачать
1.Преобразование подобия и его свойства
Преобразованием подобия называется преобразование фигуры G в фигуру G’, у которой расстояние между точками изменяется в одно и тоже число раз. Т.е. ОA’ = k OA. Это означает, что для любых двух точек геометрической фигуры выполняется равенство A’B’ = k AB. (Рис.1) Число k называется коэффициентом подобия.
Если взять произвольную точку, например точку О. И отложить отрезок OB’ = k OB, то такое преобразование фигуры G в фигуру G’ называется гомотетией. А число k называется коэффициентом гомотетии. Таким образом, гомотетия есть преобразование подобия.
Видео:№547. Докажите, что отношение периметров двух подобных треугольников равно коэффициенту подобия.Скачать
Свойства преобразования подобия
Преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки и при этом углы между прямыми сохраняются.
Рис.1 Преобразование подобия и его свойства.
Видео:Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать
2.Подобие фигур. Подобие треугольников по двум углам
Две фигуры называются подобными, если преобразованием подобия они переходят друг в друга. (Рис.2)
Если две фигуры подобны третьей, то они подобны друг другу.
Из свойств преобразования подобия следует, что у подобных фигур, соответсвующие стороны пропорциональны и соответствующие углы равны.
Рис.2 Подобие фигур.
Видео:Урок 5. №24 ОГЭ. Две окружности и подобие.Скачать
Подобие треугольников по двум углам
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. (Рис.3)
Докажем это утверждение. Пусть даны два треугольника ABC и A’B’C’.
Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A»B»C» равен треугольнику ABC по стороне и прилегающим к ней углам. Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. А т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’.
Рис.3 Подобие треугольников по двум углам.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
3.Подобие треугольников по двум сторонам и углу между ними
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.
Докажем это утверждение. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A’B’C’.
Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A»B»C» равен треугольнику ABC по двум сторонам и углу между ними со сторонами kA’B’=A»B» и kA’C’=A»C». Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. А т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’, т.е. kA’B’=AB, kB’C’=BC и kA’C’=AC.
Рис.3 Подобие треугольников.
Видео:№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать
4.Подобие треугольников по трем сторонам
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Доказательство. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A’B’C’.
Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. В результате получим треугольник A»B»C», который равен треугольнику ABC по трем сторонам kA’B’=A»B», kВ’C’=В»C» и kA’C’=A»C». Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. И т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’.
Рис.4 Подобие треугольников по трем сторонам.
Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать
5.Подобие прямоугольных треугольников
Если два прямоугольных треугольника имеют по одному равному острому углу, то такие треугольники подобны.
Пусть дан прямоугольный треугольник ABC. Проведем высоту CD. Треугольники ABC и ADC подобны, т.к. угол А у них общий. Так же как и треугольники ADC и BDC. Следовательно:
Т.е. катет прямоугольного треугольника равен средней геометрической гипотенузы и проекции этого катета на гипотенузу. А высота в прямоугольном треугольнике равна средней геометрической между проекциями катетов на гипотенузу.
Отсюда можно сделать вывод, что в любом треугольнике биссектриса делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам. (Свойство биссектрисы треугольника).
Рис.5 Подобие прямоугольных треугольников.
Докажем это утверждение. Пусть дан треугольник ABC. (Рис.6) BE — биссектриса. Треугольники ABE и BCD подобны. Углы В у них равны. Треугольники ADE и DCF также подобны. Углы D у них равны, как вертикальные. Отсюда можно записать следующие соотношения для двух пар треугольников.
Т.е. отрезки AD и DC пропорциональны сторонам AB и BC.
Рис.6 Подобие прямоугольных треугольников.
6.Пример 1
Докажите, что фигура подобная окружности, есть окружность.
Доказательство:
Пусть даны две окружности F и F’ с радиусами R1 и R2 . Подберем коэффициент k так, чтобы kR1 = R2. Необходимо доказать, что окружности подобны.
Зададим на плоскости систему координат с осями Оx и Oy таким образом, чтобы центр первой окружности F совпал с началом координат. Параллельным переносом переместим вторую окружность F’ так, чтобы ее центр также совпал с началом координат. На окружности F возьмем две произвольные точки А и В. И проведем между ними хорду. Также проведем к этим точкам радиусы ОА и ОВ, которые продлим до окружности F’, т.е. ОA’ и OB’. Оси Оx и Оy повернем так, чтобы ось Oy пересекала хорду под прямым углом (Рис.7). Тогда k OA = OA’.
Теперь рассмотрим треугольник ОАС.
Рис.7 Задача. Докажите, что фигура подобная окружности, есть окружность.
Таким образом, мы пришли к выводу, что A’B’ = k AB. А это означает, что расстояние между любыми двумя точками окружности F’ в k раз больше, чем расстояние между подобными точками в окружности F, т.е фигуру F’ можно получить преобразованием подобия или гомотетией относительно точки О. А это значит, что окружности F и F’ подобны.
Пример 2
У треугольников АВС и А1В1С1 ∠A = ∠A1, ∠B = ∠B1. AB = 6, AC = 9, A1B1 = 10, B1C1 = 10. Найдите остальные стороны треугольников.
Решение:
Пусть даны два треугольника АВС и А1В1С1 ∠A = ∠A1, ∠B = ∠B1 (Рис.8). Данные треугольники подобны по двум углам: ∠A = ∠A1 и ∠В = ∠B1. Отсюда следует, что все стороны второго треугольника отличаются от сторон первого треугольника в k число раз, т.е. коэффициент подобия. Найдем число k:
k = AB / А1В1 = 6 / 10 = 3 / 5
Отсюда следует, что
ВС = k * В1С1 = (3 / 5) * 10 = 6 см
А1С1 = АС / k = 9 / (3 / 5) = 15 см
Рис.8 Задача. У треугольников АВС и А1В1С1.
Пример 3
В трапеции ABCD основание АD = 32 см, а основание ВС = 8 см. Угол между диагональю АС и стороной СD равен углу ∠АВС, т.е. ∠АВС = ∠АСD. Найдите диагональ АС.
Решение:
В трапеции два основания лежат на параллельных прямых (Рис.9). Отсюда следует, что угол ∠CAD = ∠BCA, как внутренние накрест лежащие углы. Следовательно, треугольники АВС и АСD подобны по двум углам: ∠AВС = ∠АCD по условию задачи, ∠CAD = ∠BCA, как внутренние накрест лежащие углы.
Тогда можно составить следующие соотношение:
k = АС / ВС = AD / AC . Следовательно,
AC 2 = 8 * 32 = 256
Отсюда, АС = 16 см.
Рис.9 Задача. В трапеции ABCD основание АD = 32 см.
Пример 4
В остроугольном треугольнике АВС проведены высоты AD, BE, CF. Найдите углы треугольника DEF, если в треугольнике АВС ∠А = α, ∠В = β, ∠С = γ.
Решение:
Рассмотрим два прямоугольных треугольника AFC и ABE. Они подобны по одному острому углу, так как угол при вершине А у них общий. Следовательно, угол ∠FCE = ∠ABE. Обозначим его как ϕ3. Аналогичным образом обозначим:
Рассмотрим два прямоугольных треугольника AFO и DOC. Они подобны по одному острому углу: углы при вершине О равны как вертикальные (Рис.10). Отсюда следует, что треугольники FOD и AOC также подобны по двум пропорциональным сторонам и углу между ними.
Так как OD / OF = OC / AO
Следовательно, OD / OС = OF / AO
Отсюда следует равенство углов:
Треугольники BFO и EOC подобны. У них углы при вершине О равны как вертикальные, а углы при вершинах F и E прямые. Отсюда следует подобие треугольников FOE и BOC. Следовательно,
Рис.10 Задача. В остроугольном треугольнике АВС.
Так как ϕ1 + ϕ2 + ϕ3 = 90° (из прямоугольного треугольника BFC), то в треугольнике FDE угол при вершине F равен:
Аналогичным образом выводится, что:
Пример 5
В треугольник ABC вписан ромб ADEF, таким образом, что угол А у них общий, а вершина Е находится на стороне ВС. АВ = 12 см, АС = 4 см. Найдите сторону ромба.
Решение:
Так как у ромба противоположные стороны параллельны, то треугольники АВС и DBE подобны по двум углам: ∠А = ∠D, ∠C = ∠E как соответственные (Рис.11).
Тогда можно составить следующие соотношение:
AC / DE = AB / (AB — AD)
так как AD = DE, то
AC / DE = AB / (AB — DE)
4 / DE = 12 / (12 — DE)
48 — 4 DE = 12 DE
Отсюда, DE = 3 см.
Рис.11 Задача. В треугольник ABC вписан ромб ADEF.
Докажите, что любые две окружности подобны и коэффициент подобия равен отношению их радиусов. Докажите, что любые две окружности подобны и коэффициент подобия равен отношению их радиусов.
📽️ Видео
Параллельные прямые | Математика | TutorOnlineСкачать
Геометрия 8 класс (Урок№5 - Теорема Фалеса)Скачать
Геометрия Докажите, что два равнобедренных треугольника подобны, если углы при их вершинах равныСкачать
Решение задач на тему "Подобные треугольники". 8 классСкачать