Теорема 1 . В любом треугольнике биссектрисы двух внешних углов и биссектриса внутреннего угла, не смежного с ними, пересекаются в одной точке.
Доказательство . Рассмотрим произвольный треугольник ABC и продолжим, например, стороны BA и BC за точки A и C соответственно (рис.1).
Проведём биссектрисы углов DAC и ECA , которые являются внешними углами треугольника ABC . Обозначим точку пересечения этих биссектрис буквой O . Докажем, что точка O лежит на биссектрисе угла ABC , который является внутренним углом треугольника ABC , не смежным с внешними углами DAC и ECA . С этой целью опустим из точки O перпендикуляры OF , OG и OH на прямые AB , AC и BC соответственно. Поскольку AO – биссектриса угла DAC , то справедливо равенство:
Следовательно, справедливо равенство
Замечание 1 . В ходе доказательства теоремы 1 мы установили, что справедливы равенства
откуда вытекает, что точки F , G и H лежат на одной окружности с центром в точке O .
Определение . Окружность называют окружностью, вневписанной в треугольник , или вневписанной окружностью, если она касается касается одной стороны треугольника и продолжений двух других сторон (рис.2).
Замечание 2 . У каждого треугольника существуют три вневписанных окружности. На рисунке 2 изображена одна из них.
Замечание 3 . Центр вневписанной окружности, изображенной на рисунке 2, лежит на биссектрисе угла B , а окружность касается стороны b . Для удобства обозначений и терминологии будем называть эту окружность вневписанной окружностью, касающейся стороны b , и обозначать её радиус символом rb .
Теорема 2 . Пусть вневписанная окружность касается стороны AC треугольника ABC . Тогда отрезки касательных касательных от вершины B до точек касания с вневписанной окружностью равны полупериметру треугольника.
Доказательство . Снова рассмотрим рисунок 2 и докажем, что выполнено равенство
где a, b, c – стороны треугольника ABC . Действительно, отрезки AG и AF равны, как отрезки касательных к окружности, выходящих из точки A . Отрезки CG и CH равны, как отрезки касательных к окружности, выходящих из точки C . Отрезки BF и BH равны, как отрезки касательных к окружности, выходящих из точки B . Отсюда получаем:
где буквой p обозначен полупериметр треугольника ABC . Теорема 2 доказана.
Теорема 3 . Радиус вневписанной окружности , касающейся стороны b , вычисляется по формуле
где буквой S обозначена площадь треугольника ABC , а буквой p обозначен полупериметр треугольника ABC .
Доказательство . Снова рассмотрим рисунок 2 и заметим, что выполнены равенства
Следовательно, справедливо равенство
что и требовалось доказать.
Следствие . Радиусы двух других вневписанных в треугольник ABC окружностей вычисляются по формулам:
Теорема 4 . Если обозначить буквой r радиус вписанной в треугольник ABC окружности, то будет справедлива формула:
Складывая эти формулы и воспользовавшись формулой для радиуса вписанной окружности

что и требовалось доказать.
Теорема 5 . Площадь треугольника можно вычислить по формуле
Доказательство . Перемножим формулы
что и требовалось доказать.
Теорема 6 . Если обозначить буквой R радиус описанной около треугольника ABC окружности, то будет справедлива формула:
Доказательство . Воспользовавшись формулами для радиусов вписанной и вневписанных окружностей, а также формулой Герона, получим
Преобразуем выражение, стоящее в квадратной скобке:
Видео:Вневписанная окружность | Теоремы об окружностях - 3Скачать

Вневписанная окружность треугольника.
Определение.
Окружность, касающаяся стороны треугольника и продолжения двух других его сторон, называется вневписанной окружностью треугольника.
Теорема 1.
Центр окружности, вневписанной в треугольник, есть точка пересечения биссектрис двух внешних и одного внутреннего угла треугольника.
 
Доказательство.
BF — биссектриса ∠JBG, следовательно F равноудалена от сторон данного угла.
СF — биссектриса ∠JСH, следовательно F равноудалена от сторон данного угла.
Следовательно, точка F равноудалена от сторон ∠BAC.
Таким образом, точка F — центр окружности, касающейся стороны BC и продолжения сторон AB и AC. По определению данная окружность называется вневписанной окружностью треугольника.
Теорема 2.
Отрезок, соединяющий вершину треугольника с точкой касания вневписанной окружности и противолежащей стороны, делит треугольник на два треугольника равного периметра.
 
Доказательство.
BJ=BG, GC=CH и AJ=AH (свойство отрезков касательных, проведенных из одной точки к окружности).
PΔABC=AB+ BC +AC=AB+ BG + GC +AC=AB+ BJ + AC +CH=AJ+AH.
Так как AJ=AH, то PΔABC/2=AJ=AH и PΔABC/2+AG=AJ+AG=AH+AG=AB+BG+GA=AC+CG+GA.
Следовательно, отрезок AG поделил треугольник ABC на два треугольника равного периметра PΔABC/2+AG.
Видео:✓ Как вневписанная окружность Герону помогла | Ботай со мной #083 | Борис ТрушинСкачать

МАТЕМАТИКА
Рассмотрим произвольный треугольник АВС и проведем биссектрису 



Продолжение биссектрисы треугольника, проведенной из одной из вершин, пересекается с биссектрисами внешних углов при двух других вершинах в одной точке.
Поскольку точка 

Эта окружность называется вневписанной окружностью треугольника АВС. Ясно, что любой треугольник имеет три вневписанных окружности. (рис.3).
Положение центра 




Можно сказать, таким образом, что точка 

Принимая во внимание замечание в конце статьи (Точка пересечения продолжения биссектрисы, проведенной из одной из вершин треугольника, с описанной окружностью равноудалена от двух других вершин и центра вписанной окружности), из этого можно сделать еще один вывод:
Точки, в которых вписанная и вневписанная окружности касаются стороны треугольника, симметричны относительно середины этой стороны.
В самом деле, пусть D – точка пересечения продолжения биссектрисы 



Точка касания вневписанной окружности со стороной треугольника обладает еще одним замечательным свойством:
Прямая, проведенная через вершину треугольника и точку, в которой вневписанная окружность касается противоположной стороны, делит периметр треугольника пополам.
Можно убедиться в этом самостоятельно, используя рис. 7.
При решении задач, связанных с нахождением площади треугольника, часто полезной бывает следующая формула. Пусть 
Обозначим эту формулу (1).
Действительно, если две другие стороны данного треугольника равны b и c (рис. 8), то
Замечание. Выпуклый четырехугольник может не иметь вписанной окружности, но он всегда имеет четыре вневписанные окружности.
Любопытно, что для площади S такого четырехугольника имеет место соотношение, похожее на формулу (1).
В самом деле, пусть стороны данного четырехугольника равны последовательно a, b, c и d; p – его полупериметр, 

Пусть 



Применяя к большому треугольнику формулу (1), а к меньшему – формулу , выражающую его площадь через радиус вписанной окружности и полупериметр, получаем:
Обозначим эту формулу (2)
С другой стороны, из подобия треугольников 






Поэтому из полученной пропорции можно найти 
Подставляя это выражение в равенство (2) получим:
Спасибо, что поделились статьей в социальных сетях
Источник: Атанасян Л.С. Геометрия. Дополнительные главы к учебнику 8 кл.: Учебное пособие для учащихся школ и классов с углубленным изучением математики.
📸 Видео
Радиус вневписанной окружности. Вывод формулы.Скачать

[12] Площадь через радиус вневписанной окружности. Теорема о трилистнике, трезубец, Теорема МансионаСкачать
![[12] Площадь через радиус вневписанной окружности. Теорема о трилистнике, трезубец, Теорема Мансиона](https://i.ytimg.com/vi/lQN1nl99Yr0/0.jpg)
Как найти радиус - вневписанная окружность | Олимпиадная математикаСкачать

Вневписанная окружностьСкачать

Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиусаСкачать

Математика за минуту: Формула радиуса вневписанной окружности в произвольный треугольник.Скачать

Вневписанная окружностьСкачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Доказательство того, что радиус перпендикулярен касательной | Окружность | ГеометрияСкачать

Вписанная и описанная окружность - от bezbotvyСкачать

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Вневписанная окружность. Теория | Профильная математика в онлайн - школе СОТКАСкачать

Как запомнить формулы Геометрии Вневписанная окружность Формула радиуса через вписанную полупериметрСкачать

Всё про углы в окружности. Геометрия | МатематикаСкачать

Формула радиуса вписанной окружности треугольника. Геометрия 9 классСкачать

Сможешь найти радиус вневписанной окружности?Скачать

Лекция 59. Вневписанная окружность.Скачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать













































