Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).
Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника. 
Стороны, прилежащие к прямому углу, называются катетами .
 
Признаки равенства прямоугольных треугольников
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).
 
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).
Свойства прямоугольного треугольника
1. Сумма острых углов прямоугольного треугольника равна 90˚.
2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
3. Теорема Пифагора:
, где 
– катеты, 
– гипотенуза. Видеодоказательство
 4. Площадь прямоугольного треугольника с катетами 
:
 5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты 
и гипотенузу 
следующим образом:
6. Центр описанной окружности – есть середина гипотенузы.
 7. Радиус описанной окружности есть половина гипотенузы 
:
8. Медиана, проведенная к гипотенузе, равна ее половине
 9. Радиус вписанной окружности выражается через катеты 
и гипотенузу 
следующим образом:
Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.
Видео:ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать

Свойства прямоугольного треугольника
В данной публикации мы рассмотрим определение и свойства прямоугольного треугольника. Также разберем пример решения задачи для закрепления изложенного материала.
Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Определение прямоугольного треугольника
Прямоугольным называют треугольник, в котором один из трех углов является прямым, т.е. равным 90°.
Прямоугольный треугольник может быть равнобедренным – когда оба катета равны, а угол между каждым из них и гипотенузой составляет 45°.
Видео:Прямоугольный треугольник. Свойства, доказательства.Скачать

Свойства прямоугольного треугольника
Свойство 1
Сумма двух острых углов прямоугольного треугольника равняется 90°.
α + β = 90°
Сумма всех углов любого треугольника составляет 180°. Т.к. один угол равен 90°, на два других, также, остается 90°.
Свойство 2
Катет прямоугольного треугольника, расположенный напротив угла в 30°, равняется половине его гипотенузы.
В нашем случае, катет AB лежит напротив ∠ACB = 30°. Следовательно:
Если длина одного из катетов прямоугольного треугольника в два раза меньше длины его гипотенузы, значит угол напротив этого катета равняется 30°.
Свойство 3
Терему Пифагора можно, также, отнести к свойствам прямоугольного треугольника. Согласно ее формулировке, сумма квадратов катетов (a и b) равняется квадрату гипотенузы (c).
Таким образом, гипотенуза прямоугольного треугольника больше любого из его катетов.
Свойство 4
Медиана, опущенная на гипотенузу прямоугольного треугольника (проведенная из вершины прямого угла), равняется половине гипотенузы.
Свойство 5
Середина гипотенузы прямоугольного треугольника – это центр описанной вокруг него окружности.
Согласно свойству 4, рассмотренному выше, медиана BO равняется половине гипотенузы AC и, одновременно, радиусу окружности, описанной вокруг △ABC.
Видео:Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать

Пример задачи
В качестве примера давайте рассмотрим второе свойство, представленное выше. Допустим у нас имеется прямоугольный треугольник ABC с прямым углом в вершине C. Катет BC расположен напротив угла в 30°. Нужно доказать, что BC в два раза меньше гипотенузы AB.
Решение
Нарисуем чертеж по условиям задачи, и зеркально отразим получившийся треугольник.
Получаем △ABD, в котором ∠BAD равен 60° (30° + 30°). Т.к. все три угла данного треугольника равны, он является равносторонним. Следовательно, AD = AB = BD.
Отрезки BC и CD равны между собой (зеркально отраженные), и каждый из них составляет половину BD. Как мы уже выяснили, BD равняется AB.
Таким образом, BC в два раза меньше AB (или AB = 2BC).
Видео:Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузыСкачать

Свойства прямоугольного треугольника
| Фигура | Рисунок | Формулировка | ||||||||
| Прямоугольный треугольник | ||||||||||
| Равнобедренный прямоугольный треугольник | ||||||||||
| Прямоугольный треугольник с углом в 30° | 
| Прямоугольный треугольник | 
| Равнобедренный прямоугольный треугольник | 
|  Определение равнобедренного прямоугольного треугольника: Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты. Свойство углов прямоугольного треугольника: Острые углы равнобедренного прямоугольного треугольника равны 45° . | 
| Прямоугольный треугольник с углом в 30° | 
|  Свойство прямоугольного треугольника с углом в 30° : Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы. Признак прямоугольного треугольника с углом в 30° : Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° . | 
| Медиана, проведённая к гипотенузе прямоугольного треугольника | 
|  Свойство медианы, проведенной к гипотенузе прямоугольного треугольника: Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы. Признак прямоугольного треугольника: Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. | 
| Центр описанной окружности | 
|  Свойство окружности, описанной около прямоугольного треугольника: Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности. Признак прямоугольного треугольника: Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы. | 
|  В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов Обратная теорема Пифагора: Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным 🎬 Видео7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать  Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать  Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать  Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать  Геометрия 7 класс : Свойства прямоугольного треугольникаСкачать  Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать  Геометрия 7. Урок 9 - Признаки равенства прямоугольных треугольниковСкачать  7 класс, 36 урок, Признаки равенства прямоугольных треугольниковСкачать  7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать  Некоторые свойства прямоугольного треугольника | Геометрия 7-9 класс #35 | ИнфоурокСкачать  7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать  Урок 22. Свойство катета прямоугольного треугольника, лежащего против угла в 30° (7 класс)Скачать  Свойства прямоугольного треугольника - 7 класс геометрияСкачать  СВОЙСТВА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА §18 геометрия 7 классСкачать  Признаки равенства треугольников. 7 класс.Скачать  | 
















