Доказать что равнобедренный треугольник равносторонний

Равнобедренный треугольник: свойства, признаки и формулы

Доказать что равнобедренный треугольник равносторонний

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

Доказать что равнобедренный треугольник равносторонний

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Доказать что равнобедренный треугольник равносторонний

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Доказать что равнобедренный треугольник равносторонний

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доказать что равнобедренный треугольник равносторонний

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Доказать что равнобедренный треугольник равносторонний

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Доказать что равнобедренный треугольник равносторонний

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, AH = HC и BH — медиана.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Доказать что равнобедренный треугольник равносторонний

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

Видео:Как построить равнобедренный или равносторонний треугольник по клеткам.Скачать

Как построить равнобедренный или равносторонний треугольник по клеткам.

Признаки равностороннего треугольника

Как определить, что треугольник — равносторонний? Это можно сделать, использовав либо определение, либо признаки равностороннего треугольника.

По определению, треугольник равносторонний, если все его стороны равны.

Признаки равностороннего треугольника

1) Если у треугольника все углы равны, то этот треугольник — равносторонний.

Доказать что равнобедренный треугольник равносторонний

то треугольник ABC — равносторонний.

2) Если у треугольника совпадают проведённые к двум сторонам

— медиана и высота

— биссектриса и высота

— медиана и биссектриса,

то этот треугольник — равносторонний.

Доказать что равнобедренный треугольник равносторонний

Если AK и BF (или AK и CD, или BF и CD)

— медианы и высоты

— или биссектрисы и высоты

— или медианы и биссектрисы,

то треугольник ABC — равносторонний.

3) Если у треугольника центр вписанной и описанной окружностей совпадают, то этот треугольник — равносторонний.

Доказать что равнобедренный треугольник равностороннийЕсли точка O для треугольника ABC —

Видео:№225. Докажите, что каждый угол равностороннего треугольника равен 60°.Скачать

№225. Докажите, что каждый угол равностороннего треугольника равен 60°.

Геометрия. 7 класс

Конспект урока

Перечень рассматриваемых вопросов:

  • Понятие равнобедренного, равностороннего треугольника.
  • Формулировка и доказательство теоремы о свойствах равнобедренного треугольника.
  • Признак равнобедренного треугольника.
  • Измерения и вычисления в равнобедренном треугольнике.

Биссектриса угла треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

Равнобедренный треугольник – треугольник, у которого две стороны равны.

Равносторонний треугольник – треугольник, у которого все стороны равны.

Любой равносторонний треугольник является равнобедренным, обратное не верно.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже познакомились с такими понятиями как треугольник, рассмотрели его виды.

Рассмотрим такие виды треугольников: как равнобедренные и равносторонние, более подробно. Начнём с описания равнобедренного треугольника. Но для начала, дадим ему определение.

Треугольник называется равнобедренным, если две его стороны равны.

Доказать что равнобедренный треугольник равносторонний

В равнобедренном треугольнике равные стороны называются боковыми, а третья сторона – основанием.

AB и BC – боковые стороны ∆ABC.

AC – основание ∆ABC.

Если третья сторона равна двум другим, то любая сторона может быть основанием.

Теперь рассмотрим треугольник, у которого все стороны равны. Такой треугольник называется равносторонним.

Доказать что равнобедренный треугольник равносторонний

Докажем две теоремы о свойствах равнобедренного треугольника.

Теорема: В равнобедренном треугольнике углы при основании равны.

Доказать что равнобедренный треугольник равносторонний

  1. Проведем биссектрису АF.
  2. ∆ABF = ∆ACF (т.к. AF – общая сторона); ∠BAF = ∠CAF (AF –по определению биссектрисы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника).
  3. ∠B = ∠C.

Теперь сформулируем теорему о биссектрисе, медиане и высоте равнобедренного треугольника, проведённых к основанию.

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой треугольника.

BC– основание ΔABC

AF– биссектриса ΔABC

Доказать: AF – медиана и высота.

Доказать что равнобедренный треугольник равносторонний

  1. ∆ABF = ∆ACF (т.к. AF – общая сторона); ∠BAF = ∠CAF (AF – по определению биссектрисы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника) → BF = FC как соответствующие элементы равных треугольников.
  2. F – середина BC → AF – медиана (по определению медианы треугольника).
  3. ∠AFB =∠AFC (как соответствующие элементы равных треугольников), их сумма равна 180 градусам (по свойству развернутого угла).
  4. ∠AFB = ∠AFC = 90° →AF – высота треугольника (по определению высоты).

Справедливы и следующие утверждения.

Высота равнобедренного треугольника, проведённая к основанию, является медианой и биссектрисой.

А медиана равнобедренного треугольника, проведённая к основанию, является высотой и биссектрисой.

BC– основание ΔABC

AF – медиана ∠ВАС ΔABC

Доказать: AF – биссектриса и высота ΔABC.

Доказать что равнобедренный треугольник равносторонний

∆ABF = ∆ACF т. к. ∠В = ∠С (по свойству равнобедренного треугольника); BF = CF (по определению медианы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника) → ∠BАF = ∠FАC (как соответствующие элементы равных треугольников) => AF ‑ биссектриса ΔABC (по определению биссектрисы треугольника).

∠AFB = ∠AFC как соответствующие элементы равных треугольников, но их сумма равна 180 (по свойству развернутого угла).

∠AFB = ∠AFC = 90° →AF – высота треугольника (по определению высоты треугольника).

Сегодня мы узнали, что такое равнобедренный, равносторонний треугольник, рассмотрели свойства равнобедренного треугольника.

Разберем задачу на доказательство.

Рассмотрим, как можно решить задачу на доказательство, используя понятие: «медиана равнобедренного треугольника».

На рисунке изображён треугольник ABC, при этом AM – медиана, при этом AM = BM. Докажем, что угол А равен сумме двух других углов ∆ABC.

Доказать что равнобедренный треугольник равносторонний

По условию AМ = ВМ → ∆АВМ – равнобедренный (по определению равнобедренного треугольника)→ ∠МВА = ∠ВАМ (по свойству равнобедренного треугольника).

Т. к. АМ – медиана ∆ABC и AМ = ВМ → AМ = ВМ = СМ → ∆АМС – равнобедренный (по определению равнобедренного треугольника) → ∠МСА = ∠ВАС (по свойству равнобедренного треугольника).

Получаем, что ∠А = ∠ВАС + ∠ВАМ = ∠МВА + ∠МСА = ∠В + ∠С.

Что и требовалось доказать.

Разбор решения заданий тренировочного модуля.

Периметр равнобедренного треугольника ABC равен 50 см, боковая сторона AC на 4 см больше основания BC. Найдите основание треугольника.

Решение: Пусть х – основание ВС треугольника АВС, тогда АС = АВ (как боковые стороны равнобедренного треугольника).

АС = АВ = х + 4 (по условию).

Периметр треугольника АВС равен сумме всех его сторон, т. е. 50 см = АС + ВС + АВ,

50 = (х + 4) + (х + 4) + х,

х = 14 см – основание BC.

На рисунке изображён равнобедренный треугольник ABC. AC – основание треугольника, ∠1 = 120. Найдите ∠2.

Доказать что равнобедренный треугольник равносторонний

Решение: ∠1 и ∠АСВ – смежные →∠1 + ∠АСВ = 180, значит:

∠АСВ = 180 – 120 = 60

АВС – равнобедренный, значит: ∠ВАС = ∠АСВ = 60 (углы при основании равнобедренного треугольника равны).

📽️ Видео

Как распознать равнобедренный треугольник? #shortsСкачать

Как распознать равнобедренный треугольник? #shorts

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

№116. Докажите, что в равностороннем треугольнике все углы равны.Скачать

№116. Докажите, что в равностороннем треугольнике все углы равны.

Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

№135. Докажите, что если сторона одного равностороннего треугольника равна стороне другогоСкачать

№135. Докажите, что если сторона одного равностороннего треугольника равна стороне другого

Всякий равносторонний треугольник является равнобедренным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Всякий равносторонний треугольник является равнобедренным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)Скачать

Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)

7 класс. Геометрия. Равнобедренный треугольник. Равносторонний треугольник. Решение задачи. Урок #6Скачать

7 класс. Геометрия. Равнобедренный треугольник. Равносторонний треугольник. Решение задачи. Урок #6

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольник

ОГЭ Задание 25 Доказать что треугольник равностороннийСкачать

ОГЭ Задание 25 Доказать что треугольник равносторонний

7 фактов про равносторонний треугольникСкачать

7 фактов про равносторонний треугольник

Геометрия 7 класс - равнобедренный треугольник и его свойстваСкачать

Геометрия 7 класс - равнобедренный треугольник и его свойства
Поделиться или сохранить к себе: