Из центра окружности восстановлен перпендикуляр к плоскости треугольника

К плоскости треугольника из центра вписанной в него окружности радиусом 0, 4 дм восстановлен перпендикуляр длиной 0, 3 дм?

Геометрия | 10 — 11 классы

К плоскости треугольника из центра вписанной в него окружности радиусом 0, 4 дм восстановлен перпендикуляр длиной 0, 3 дм.

Найдите расстояние от конца этого перпендикуляра до сторон треугольника.

( По ответам должно выйти 0, 5).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Ответ ответ ответ ответ ответ ответ ответ.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Содержание
  1. К плоскости треугольника со сторонами 8см, 15см, 17см из вершины его среднего угла проведен перпендикуляр длиной 6см?
  2. Дан равносторонний треугольник АВС со стороной 12 см?
  3. Из вершины прямого угла прямоугольного треугольника с катетами 6 и 8 восстановлен перпендикуляр длиной 12см?
  4. Из центра окружности, описанной вокруг прямоугольника с катетом 6 см и гипотенузой 10 см, восстановлен перпендикуляр к плоскости треугольника длиной 4 см?
  5. К плоскости треугольника со сторонами 5см, 12см, 13см из вершины его меньшего угла проведен перпендикуляр длиной 16см?
  6. Стороны треугольника равны 51, 30 и 27 см?
  7. Точка пространства равноудалена от сторон треугольника?
  8. Из центра О окружности, вписанной в правильный тоеугольник к плоскости треугольника проведен перпендикуляр од = 6 см?
  9. Из центра О вписанной в треугольник окружности к плоскости этого треугольника проведен перпендикуляр OS длиной 2√5см?
  10. Из центра круга радиуса 9 см восставлен перпендикуляр к его плоскости?
  11. Решение метрических задач в начертательной геометрии с примерами
  12. Решение метрических задач методами преобразовании проекций
  13. Четыре основных задачи преобразовании проекций
  14. Способ вращения
  15. Способ плоскопараллельного перемещения
  16. Способ замены плоскостей проекций
  17. Способ плоскопараллельного перемещения
  18. Способ замены плоскостей проекций
  19. Метрические задачи
  20. Определение расстояний между геометрическими объектами
  21. Перпендикулярность плоскостей
  22. Определение углов между прямой и плоскостью и между двумя плоскостями
  23. Примеры метрических задач
  24. Теорема о проекциях прямого угла
  25. Линии наибольшего наклона плоскости
  26. Перпендикулярность прямой и плоскости
  27. Взаимная перпендикулярность плоскостей
  28. Определение метрических задач
  29. Определение длины отрезка
  30. Определение площади треугольника
  31. Проецирование прямого угла
  32. Перпендикулярность прямых и плоскостей
  33. Перпендикулярность прямой и плоскости
  34. Расстояние от точки до плоскости
  35. Перпендикулярность плоскостей
  36. Определение натуральных величин геометрических элементов
  37. Определение расстояния между геометрическими элементами (образами)
  38. Определение углов наклона геометрических элементов к плоскостям проекций H и V
  39. 📸 Видео

Видео:№143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 смСкачать

№143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см

К плоскости треугольника со сторонами 8см, 15см, 17см из вершины его среднего угла проведен перпендикуляр длиной 6см?

К плоскости треугольника со сторонами 8см, 15см, 17см из вершины его среднего угла проведен перпендикуляр длиной 6см.

Найти расстояние от концов перпендикуляра до противоположной стороны.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:Перпендикуляр от точки к плоскостиСкачать

Перпендикуляр от точки к плоскости

Дан равносторонний треугольник АВС со стороной 12 см?

Дан равносторонний треугольник АВС со стороной 12 см.

Из вершины треугольника к его плоскости проведен перпендикуляр равный 6см.

Найти расстояния от концов перпендикуляра до противоположной стороны.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:№147. Из точки М проведен перпендикуляр МВ к плоскости прямоугольника ABCD. Докажите, чтоСкачать

№147. Из точки М проведен перпендикуляр МВ к плоскости прямоугольника ABCD. Докажите, что

Из вершины прямого угла прямоугольного треугольника с катетами 6 и 8 восстановлен перпендикуляр длиной 12см?

Из вершины прямого угла прямоугольного треугольника с катетами 6 и 8 восстановлен перпендикуляр длиной 12см.

Найдите расстояние от конца перпендикуляра до середины гипотинузы ( толко если можно то ссылками на что вы опираетесь).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярнаяСкачать

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная

Из центра окружности, описанной вокруг прямоугольника с катетом 6 см и гипотенузой 10 см, восстановлен перпендикуляр к плоскости треугольника длиной 4 см?

Из центра окружности, описанной вокруг прямоугольника с катетом 6 см и гипотенузой 10 см, восстановлен перпендикуляр к плоскости треугольника длиной 4 см.

Найдите расстояние от конца перпендикуляра до вершины прямого угла.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Перпендикуляр и наклонная в пространстве. 10 класс.

К плоскости треугольника со сторонами 5см, 12см, 13см из вершины его меньшего угла проведен перпендикуляр длиной 16см?

К плоскости треугольника со сторонами 5см, 12см, 13см из вершины его меньшего угла проведен перпендикуляр длиной 16см.

Найти расстояние от концов перпендикуляра до противоположной стороны.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:Определение кратчайшей расстоянии от точки до плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскости

Стороны треугольника равны 51, 30 и 27 см?

Стороны треугольника равны 51, 30 и 27 см.

Из вершины меньшего угла треугольника проведен к его плоскости перпендикуляр длиной 10 см.

Найдите расстояние от концов перпендикуляра до противолежащей стороны треугольника.

C чертежом обязательно.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:№151. Прямая CD перпендикулярна к плоскости треугольника ABC. Докажите, что: а) треугольник ABCСкачать

№151. Прямая CD перпендикулярна к плоскости треугольника ABC. Докажите, что: а) треугольник ABC

Точка пространства равноудалена от сторон треугольника?

Точка пространства равноудалена от сторон треугольника.

Доказать, что основа перпендикуляра опущенного из этой точки до плоскости треугольника, является центром окружности, вписанной в данный треугольник.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:Перпендикуляр к плоскости 2Скачать

Перпендикуляр к плоскости 2

Из центра О окружности, вписанной в правильный тоеугольник к плоскости треугольника проведен перпендикуляр од = 6 см?

Из центра О окружности, вписанной в правильный тоеугольник к плоскости треугольника проведен перпендикуляр од = 6 см.

Точка д удалена от сторон треугольника на расстояние 14 см.

Найти сторону треугольника.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:Перпендикуляр к плоскостиСкачать

Перпендикуляр к плоскости

Из центра О вписанной в треугольник окружности к плоскости этого треугольника проведен перпендикуляр OS длиной 2√5см?

Из центра О вписанной в треугольник окружности к плоскости этого треугольника проведен перпендикуляр OS длиной 2√5см.

Найдите площадь треугольника ASC если АВ = 14, АС = 15, ВС = 13.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:Перпендикуляр к плоскостиСкачать

Перпендикуляр к плоскости

Из центра круга радиуса 9 см восставлен перпендикуляр к его плоскости?

Из центра круга радиуса 9 см восставлен перпендикуляр к его плоскости.

Найдите расстояние от конца этого перпендикуляра до точек окружности, если длина перпендикуляра 40 см.

Вы зашли на страницу вопроса К плоскости треугольника из центра вписанной в него окружности радиусом 0, 4 дм восстановлен перпендикуляр длиной 0, 3 дм?, который относится к категории Геометрия. По уровню сложности вопрос соответствует учебной программе для учащихся 10 — 11 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

Видео:№ 46 - Геометрия 10-11 класс ПогореловСкачать

№ 46 - Геометрия 10-11 класс Погорелов

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым — разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияИз центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Если необходимо определить угол наклона отрезка АВ к плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольникато построение прямоугольного треугольника ведется на фронтальной проекции.

Видео:№583. Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскоСкачать

№583. Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоско

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника— угол наклона к плоскостиИз центра окружности восстановлен перпендикуляр к плоскости треугольника

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Из центра окружности восстановлен перпендикуляр к плоскости треугольника

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая — но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиИз центра окружности восстановлен перпендикуляр к плоскости треугольникавращаем отрезок ЛВ до положения параллельного плоскостиИз центра окружности восстановлен перпендикуляр к плоскости треугольника(1 задача). Далее вращением вокруг осиИз центра окружности восстановлен перпендикуляр к плоскости треугольникаполученный отрезок до положения перпендикулярного плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольникаНа Из центра окружности восстановлен перпендикуляр к плоскости треугольникаотрезок с проецируется в точку Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Из центра окружности восстановлен перпендикуляр к плоскости треугольникадолжно быть равно по величина Из центра окружности восстановлен перпендикуляр к плоскости треугольниканаходим в пересечении вертикальных линий связи и линий Из центра окружности восстановлен перпендикуляр к плоскости треугольникапараллельных оси Из центра окружности восстановлен перпендикуляр к плоскости треугольника(1 задача). Далее отрезок Из центра окружности восстановлен перпендикуляр к плоскости треугольникаперемещаем до положения перпендикулярного оси Из центра окружности восстановлен перпендикуляр к плоскости треугольникаПри этом Из центра окружности восстановлен перпендикуляр к плоскости треугольникаНа фронтальной проекции отрезок с проецируется в точку Из центра окружности восстановлен перпендикуляр к плоскости треугольника(2 задача).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Из центра окружности восстановлен перпендикуляр к плоскости треугольниказаменена на новую фронтальную плоскость Из центра окружности восстановлен перпендикуляр к плоскости треугольникапараллельную прямой АВ. При этом новая ось Из центра окружности восстановлен перпендикуляр к плоскости треугольникапроводится параллельно проекции Из центра окружности восстановлен перпендикуляр к плоскости треугольникаЛинии связи проводятся перпендикулярно оси Из центра окружности восстановлен перпендикуляр к плоскости треугольникаи на них от Из центра окружности восстановлен перпендикуляр к плоскости треугольникаоткладываются координаты z точек А и В (1 задача).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Из центра окружности восстановлен перпендикуляр к плоскости треугольникаперпендикулярно проекцииИз центра окружности восстановлен перпендикуляр к плоскости треугольника. Т.к. Из центра окружности восстановлен перпендикуляр к плоскости треугольникапараллельна оси Из центра окружности восстановлен перпендикуляр к плоскости треугольника, расстояние до проекций Из центра окружности восстановлен перпендикуляр к плоскости треугольникабудет одинаковое и прямая спроецируется в точку Из центра окружности восстановлен перпендикуляр к плоскости треугольника(2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Из центра окружности восстановлен перпендикуляр к плоскости треугольникаДалее Из центра окружности восстановлен перпендикуляр к плоскости треугольникарасполагаем перпендикулярно оси Из центра окружности восстановлен перпендикуляр к плоскости треугольникаОткладываем на ней отрезок Из центра окружности восстановлен перпендикуляр к плоскости треугольникаи циркулем строим треугольник Из центра окружности восстановлен перпендикуляр к плоскости треугольникаравный по величине Из центра окружности восстановлен перпендикуляр к плоскости треугольникаНа фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Из центра окружности восстановлен перпендикуляр к плоскости треугольникарасположить параллельно оси Из центра окружности восстановлен перпендикуляр к плоскости треугольникапри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Из центра окружности восстановлен перпендикуляр к плоскости треугольникапроводим перпендикулярно горизонтали Из центра окружности восстановлен перпендикуляр к плоскости треугольникатогда на новую фронтальную плоскость Из центра окружности восстановлен перпендикуляр к плоскости треугольникатреугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось Из центра окружности восстановлен перпендикуляр к плоскости треугольникапровести параллельно плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольникаНа новую плоскость Из центра окружности восстановлен перпендикуляр к плоскости треугольникатреугольник спроецируется в натуральную величину.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Видео:Наклонная, проекция, перпендикуляр. 7 класс.Скачать

Наклонная, проекция, перпендикуляр. 7 класс.

Метрические задачи

Метрические задачи — это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой — обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) — через точку К проведена плоскость перпендикулярно прямой АВ. Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Из центра окружности восстановлен перпендикуляр к плоскости треугольникаИз приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Из центра окружности восстановлен перпендикуляр к плоскости треугольникато искомый угол определится по формуле:

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

которую можно решить графически, достроив угол Из центра окружности восстановлен перпендикуляр к плоскости треугольникадо 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Из центра окружности восстановлен перпендикуляр к плоскости треугольникаДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Дополненный угол будет искомым.

Натуральную величину дополнительного угла Из центра окружности восстановлен перпендикуляр к плоскости треугольникав обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольникаНаходим линию пересечения плоскостей Из центра окружности восстановлен перпендикуляр к плоскости треугольника(линия 1-2) и точку встречи Из центра окружности восстановлен перпендикуляр к плоскости треугольникав месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Видео:№ 52 - Геометрия 10-11 класс ПогореловСкачать

№ 52 - Геометрия 10-11 класс Погорелов

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Из центра окружности восстановлен перпендикуляр к плоскости треугольникаBAC = 90°; AB || П’

Доказать, что C’A’Из центра окружности восстановлен перпендикуляр к плоскости треугольникаA’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’Из центра окружности восстановлен перпендикуляр к плоскости треугольникаП’^AA’Из центра окружности восстановлен перпендикуляр к плоскости треугольникаA’B’ значит ABИз центра окружности восстановлен перпендикуляр к плоскости треугольникаAA,AB Из центра окружности восстановлен перпендикуляр к плоскости треугольникаплоскости CAA’C’, тогда и A’B’ Из центра окружности восстановлен перпендикуляр к плоскости треугольникаCAA’C’. Следовательно,CA’Из центра окружности восстановлен перпендикуляр к плоскости треугольникаA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 — если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Из центра окружности восстановлен перпендикуляр к плоскости треугольникаh1 Из центра окружности восстановлен перпендикуляр к плоскости треугольникаa Из центра окружности восстановлен перпендикуляр к плоскости треугольникаh ;
б -скрещивающиеся b2 Из центра окружности восстановлен перпендикуляр к плоскости треугольникаИз центра окружности восстановлен перпендикуляр к плоскости треугольника2 Из центра окружности восстановлен перпендикуляр к плоскости треугольникаb Из центра окружности восстановлен перпендикуляр к плоскости треугольникаИз центра окружности восстановлен перпендикуляр к плоскости треугольника

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали — линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а — плоскость общего положения; h ∈α — горизонталь плоскости а; AB Из центра окружности восстановлен перпендикуляр к плоскости треугольникаh — линия наибольшего наклона;
φ = Из центра окружности восстановлен перпендикуляр к плоскости треугольникаAB, AB 1 — угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция — фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня — горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Из центра окружности восстановлен перпендикуляр к плоскости треугольника), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция — фронтальной проекции фронтали плоскости.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости: Из центра окружности восстановлен перпендикуляр к плоскости треугольника

б -построение плоскости, перпендикулярной прямой: Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Из центра окружности восстановлен перпендикуляр к плоскости треугольника× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Из центра окружности восстановлен перпендикуляр к плоскости треугольника×h): n1Из центра окружности восстановлен перпендикуляр к плоскости треугольникаh1; n2Из центра окружности восстановлен перпендикуляр к плоскости треугольникаИз центра окружности восстановлен перпендикуляр к плоскости треугольника2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно — как пересекающая прямую n или параллельная ей.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Из центра окружности восстановлен перпендикуляр к плоскости треугольника ) ; A (A1, A2).

Построить: A ∈ β Из центра окружности восстановлен перпендикуляр к плоскости треугольникаα .

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Видео:[Начертательная геометрия] Расстояние от точки до плоскости, перпендикуляр к плоскости 1 частьСкачать

[Начертательная геометрия] Расстояние от точки до плоскости, перпендикуляр к плоскости 1 часть

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Из центра окружности восстановлен перпендикуляр к плоскости треугольникаа второй катет -разница координат Из центра окружности восстановлен перпендикуляр к плоскости треугольникаконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольникатак и на плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольникаПри правильных построениях Из центра окружности восстановлен перпендикуляр к плоскости треугольника. Углы а и Из центра окружности восстановлен перпендикуляр к плоскости треугольника-углы наклона отрезка прямой АВ к плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольникасоответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Из центра окружности восстановлен перпендикуляр к плоскости треугольника(в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая — ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника
Рисунок 5.4 — Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Из центра окружности восстановлен перпендикуляр к плоскости треугольникав соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Из центра окружности восстановлен перпендикуляр к плоскости треугольника.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рисунок 5.5 — Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеИз центра окружности восстановлен перпендикуляр к плоскости треугольника— Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Из центра окружности восстановлен перпендикуляр к плоскости треугольника
Рисунок 5.6 — Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Из центра окружности восстановлен перпендикуляр к плоскости треугольникаперпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Из центра окружности восстановлен перпендикуляр к плоскости треугольника
Рисунок 5.7 — Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Рисунок 5.8 — Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Способ замены плоскостей проекций (задача 1)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Способ вращения вокруг проецирующей оси

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Способ вращения вокруг прямой уровня (горизонтали)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Способ вращения вокруг проецирующей оси i(i Из центра окружности восстановлен перпендикуляр к плоскости треугольникаV)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Способ плоско-параллельного перемещения (переноса)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Определение расстояний:

1. Расстояние между точками — определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой — определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

3. Расстояние между параллельными прямыми — определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) — задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) — задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

4. Расстояние между скрещивающимися прямыми — определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций — задачи 1 и 2

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

5. Расстояние от точки до плоскости — определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую — задача 3)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

6. Расстояние между прямой и параллельной ей плоскостью — определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями — определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

б. Способ замены плоскостей проекции

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Определение величин углов:

1. Угол φ между скрещивающимися прямыми — определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b — скрещивающиеся прямые
Требуется:

φ — ?

Решение:
1.
Из центра окружности восстановлен перпендикуляр к плоскости треугольника
2.φ — вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

2. Угол φ между прямой и плоскостью — определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB — прямая общего положения
Требуется:
φ — ?

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Решение:
1. l Из центра окружности восстановлен перпендикуляр к плоскости треугольника α(h ∩ f);
lИз центра окружности восстановлен перпендикуляр к плоскости треугольника» Из центра окружности восстановлен перпендикуляр к плоскости треугольникаf»;
lИз центра окружности восстановлен перпендикуляр к плоскости треугольника Из центра окружности восстановлен перпендикуляр к плоскости треугольникаh’;
2. ∠φ — вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β — определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) — угол φ определяется способом вращения вокруг линии уровня (рис. а)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

Дано:
(m // h); (а
b).
Требуется:
φ — ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D») провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ — вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) — угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Из центра окружности восстановлен перпендикуляр к плоскости треугольника

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📸 Видео

Перпендикулярность прямой и плоскости. 10 класс.Скачать

Перпендикулярность прямой и плоскости. 10 класс.

5. Начертательная геометрия. Практикум. Перпендикуляр к плоскостиСкачать

5. Начертательная геометрия. Практикум. Перпендикуляр к плоскости

№140. Из точки А, не принадлежащей плоскости α, проведены к этой плоскости перпендикуляр АОСкачать

№140. Из точки А, не принадлежащей плоскости α, проведены к этой плоскости перпендикуляр АО

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости
Поделиться или сохранить к себе: