Доказать ab 2 ad ac в окружности

Касательная к окружности

Доказать ab 2 ad ac в окружности

О чем эта статья:

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Доказать ab 2 ad ac в окружности

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Доказать ab 2 ad ac в окружности

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Доказать ab 2 ad ac в окружности

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Доказать ab 2 ad ac в окружности

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Доказать ab 2 ad ac в окружности

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Доказать ab 2 ad ac в окружности

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Доказать ab 2 ad ac в окружности

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Доказать ab 2 ad ac в окружности

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Доказать ab 2 ad ac в окружности

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Доказать ab 2 ad ac в окружности

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Доказать ab 2 ad ac в окружности

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Доказать ab 2 ad ac в окружности

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Доказать ab 2 ad ac в окружности

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, причём AD = R.

а) Докажите, что треугольник ABC прямоугольный.

б) Вписанная окружность касается сторон AB и BC в точках E и F. Найдите площадь треугольника BEF, если известно, что R = 2 и CD = 10.

а) Пусть O — центр вписанной окружности треугольника ABC.

Центр окружности, вписанной в угол, лежит на его биссектрисе, значит, AO — биссектриса угла BAC. Треугольник AOD прямоугольный и равнобедренный, поэтому ∠OAD = 45°. Следовательно, ∠BAC = 90°.

б) Обозначим BF = x. По теореме о равенстве отрезков касательных, проведённых к окружности из одной точки, AE = AD = 2, CF = CD = 10 и BE = BF = x. По теореме Пифагора BC 2 = AC 2 + AB 2 , или (10 + x) 2 = 12 2 + (2 + x) 2 . Из этого уравнения находим, что x = 3. Тогда

Доказать ab 2 ad ac в окружности

Доказать ab 2 ad ac в окружности

Ответ : Доказать ab 2 ad ac в окружности

Критерии оценивания выполнения заданияБаллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен

1
Решение не соответствует ни одному из критериев, приведённых выше0
Максимальный балл3

Аналоги к заданию № 502296: 502316 511378 Все

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Доказать ab 2 ad ac в окружности

Вариант 1 (уровень 1)

№ 1. Параллельны ли прямые d и е (рис. 3.43)?
ОТВЕТ: d || е.

№ 2. Дано: ЕО = LO; FO = КО (рис. 3.44). Доказать: ЕF || KL.
ОТВЕТ: ΔEOF = ΔLOK, значит, ∠E = ∠L.
∠E = ∠L, значит, EF || KL.

№ 3. Дано: ∠1 = ∠2; ∠2 + ∠3 = 180° (рис. 3.45). Доказать: а || с.
ОТВЕТ: ∠1 = ∠2, ∠2 + ∠3 = 180°, но ∠1 = ∠4, тогда ∠4 + ∠3 = 180°.
Значит a || с (рис. 3.60).

Доказать ab 2 ad ac в окружности

Вариант 2 (уровень 1)

№ 1. Параллельны ли прямые m и n (рис. 3.46)?
ОТВЕТ: m || n.

№ 2. Дано: NF = PF; MF = QF (рис. 3.47). Доказать: MN || PQ.
ОТВЕТ: ΔMFN = ΔQFP, значит, ∠M = ∠Q.
∠M = ∠Q, значит, MN || PQ.

№ 3. Дано: ∠1 + ∠2 = 180°; ∠2 = ∠3 (рис. 3.48). Доказать: а || с.
ОТВЕТ: ∠1 + ∠2 = 180°.
∠2 = ∠3, но ∠1 = ∠4, значит, ∠4 + ∠3 = 180°.
Следовательно, a || с (рис. 3.61).

Геометрия 7 Атанасян Самостоятельная 8

С-8. II уровень сложности (задания и ответы)

Вариант 1 (уровень 2)

№ 1. Какие из прямых а, b, с, изображенных на рис. 3.49, являются параллельными?
ОТВЕТ: . a || b || c.

№ 2. Дано: АВ = ВС; DE = EF; ∠1 = ∠2 (рис. 3.50). Доказать: АВ || DE.
ОТВЕТ: ΔАВС и ΔDEF – равнобедренные, ∠1 = ∠2, значит, ∠A = ∠D.
∠A и ∠EDF – соответственные при прямых АВ и DE и секущей AF, следовательно, АВ || DE.

№ 3. Прямая ЕК является секущей для прямых CD и MN (Е ∈ CD, К ∈ MN). Угол DEK равен 65°. При каком значении угла NKE прямые CD и MN могут быть параллельными?
ОТВЕТ: Рассмотрим два случая (рис. 3.62): a) ∠NKE = 115°; б) ∠NKE = 65°.Доказать ab 2 ad ac в окружности

Вариант 2 (уровень 2)

№ 1. Какие из прямых m, n, k, изображенных на рис. 3.51, являются параллельными?
ОТВЕТ: m || n || k.

№ 2. Дано: MN = NK; РО = ОЕ; ∠1 = ∠2 (рис. 3.52). Доказать: MN || ОЕ.
ОТВЕТ: ΔMNK и ΔРОЕ – равнобедренные, ∠1 = ∠2, тогда ∠NMK = ∠PEO, но ∠NMK и ∠PEO – накрест лежащие при прямых MN и ОЕ и секущей ME, следовательно, MN || ОЕ.

№ 3. Прямая MN является секущей для прямых АВ и CD (М ∈ АВ, N ∈ CD). Угол AMN равен 78°. При каком значении угла CNM прямые АВ и CD могут быть параллельными?
ОТВЕТ: Рассмотрим два случая (рис. 3.63): a) ∠CNM = 102°; б) ∠CNM = 78°.Доказать ab 2 ad ac в окружности

Геометрия 7 Атанасян Самостоятельная 8.

С-8. III уровень сложности (задания и ответы)

Вариант 1 (уровень 3)

№ 1. Дано: ∠1 = ∠2; ВС = EF; AD = CF (рис. 3.53). Доказать: АВ || DE.
ОТВЕТ: ΔАВС = ΔDEF по двум сторонам и углу между ними, значит, ∠BAC = ∠EDF.
∠BAC и ∠EDF – соответственные при прямых АВ и DE и секущей АЕ, следовательно, АВ || DE.

№ 2. Дано: ∠1 = ∠2; BD ⊥ АС; АС – биссектриса ∠BAE (рис. 3.54). Доказать: ВС || АЕ.
ОТВЕТ: ΔABD = ΔCBD по стороне и прилежащим к ней углам, следовательно, ∠BAD = ∠BCD.
АС – биссектриса ∠BAE, значит, ∠BAD = ∠DAE.
Получили, что накрест лежащие углы ∠BCD и ∠DAE при прямых ВС и АЕ и секущей АС равны, значит, ВС || АЕ.

№ 3. Дано: AM = MD; DE = DF; АЕ = AF (рис. 3.55). Доказать: MD || AF.
ОТВЕТ: ΔAED = ΔAFD по трем сторонам, поэтому ∠EAD = ∠DAF.
ΔAMD – равнобедренный, значит, ∠EAD = ∠MDA.
∠MDA и ∠DAF – накрест лежащие при прямых MD и АF и секущей AD и они равны, значит, MD || АF.

Вариант 2 (уровень 3)

№ 1. Дано: ∠1 = ∠2; ED = ВС; ЕF = АС (рис. 3.56). Доказать: EF || АС.
ОТВЕТ: ΔАВС = ΔFDE по двум сторонам и углу между ними, значит, ∠CAB = ∠EFD. ∠CAB и ∠EFD – накрест лежащие при прямых АС и EF и секущей АF, следовательно, АС || ЕF.

№ 2. Дано: АС – биссектриса ∠BAD; BE ⊥ АС; АЕ = ЕС (рис. 3.57). Доказать: AD || ВС.
ОТВЕТ: ΔАВЕ = ΔСВЕ по двум сторонам и углу между ними, значит, ∠BAE = ∠BCE.
АС – биссектриса BAD, поэтому ∠BAE = ∠EAD.
Получили, что накрест лежащие углы ВСЕ и EAD при прямых ВС и AD и секущей АС равны, значит, ВС || AD.

№ 3. Дано: АС – биссектриса ∠BAM; ∠BDA = ∠BEC; AD = СЕ; BE = BD (рис. 3.58). Доказать: AM || ВС.
ОТВЕТ: ΔADB = ΔСЕВ по двум сторонам и углу между ними, отсюда АВ = ВС, значит, ∠BAC = ∠BCA как углы при основании равнобедренного ΔАВС.
АС – биссектриса ∠BAM, значит, ∠BAC = ∠CAM.
Накрест лежащие углы САМ и АСВ при прямых AM и ВС и секущей АС равны, значит, AM || ВС.

Вы смотрели: Геометрия 7 класс (УМК Атанасян и др. — Просвещение). Урок 33. Решение задач по теме «Признаки параллельности прямых». Самостоятельная работа № 8 с ответами и решениями (3 уровня сложности по 2 варианта в каждом). Геометрия 7 Атанасян Самостоятельная 6. Ориентировано на работу с базовым учебником: «Атанасян Л.С., Бутузов В.Ф. и др. Геометрия. 7—9 классы. Учебник для общеобразовательных организаций. М.: Просвещение».

🎬 Видео

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

№138. На рисунке 75 AB = CD и BD=AC. Докажите, что: a) ∠CAD=∠ADB; б) ∠BAC=∠CDB.Скачать

№138. На рисунке 75 AB = CD и BD=AC. Докажите, что: a) ∠CAD=∠ADB; б) ∠BAC=∠CDB.

Геометрия В окружности проведены диаметры AB и CD. Докажите, что AC = BD и AC ll BDСкачать

Геометрия В окружности проведены диаметры AB и CD. Докажите, что AC = BD и AC ll BD

Доказать, что точки лежат на одной окружностиСкачать

Доказать, что точки лежат на одной окружности

№172. На рисунке 96 AC=AD, AB⊥CD. Докажите, что BC=BD и ∠ACB=∠ADB.Скачать

№172. На рисунке 96 AC=AD, AB⊥CD. Докажите, что BC=BD и ∠ACB=∠ADB.

№1.161. В выпуклом пятиугольнике ABCDE известно, что AE = AD, AC = AB и ∠DAC = ∠AEB+∠ABE. ДокажитеСкачать

№1.161. В выпуклом пятиугольнике ABCDE известно, что AE = AD, AC = AB и ∠DAC = ∠AEB+∠ABE. Докажите

ОГЭ Р-2 номер 16Скачать

ОГЭ Р-2 номер 16

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольники

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

ТРИ ПРИЗНАКА РАВЕНСТВА ТРЕУГОЛЬНИКОВ НА ЕГЭ #shorts #математика #егэ #огэ #профильныйегэ #геометрияСкачать

ТРИ ПРИЗНАКА РАВЕНСТВА ТРЕУГОЛЬНИКОВ НА ЕГЭ #shorts #математика #егэ #огэ #профильныйегэ #геометрия

Геометрия Задача про циркуль Найти середину отрезка одним циркулемСкачать

Геометрия Задача про циркуль Найти середину отрезка одним циркулем

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Задачи на доказательство по геометрии. Первый признак равенства треугольников.Скачать

Задачи на доказательство по геометрии. Первый признак равенства треугольников.

Теорема о касательной и секущей ДоказательствоСкачать

Теорема о касательной и секущей Доказательство

Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.Скачать

Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.
Поделиться или сохранить к себе: