В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.
H — высота из прямого угла
a, b — катеты
с — гипотенуза
c 1 , c 2 — отрезки полученные от деления гипотенузы, высотой
α , β — углы при гипотенузе
Формула длины высоты через стороны, ( H ):
Формула длины высоты через гипотенузу и острые углы, ( H ):
Формула длины высоты через катет и угол, ( H ):
Формула длины высоты через составные отрезки гипотенузы , ( H ):
Видео:Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать
Высота прямоугольного треугольника
Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным способом в зависимости от данных в условии задачи.
Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле
или, в другой записи,
где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).
Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника
(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:
Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:
Так как площадь прямоугольного треугольника равна половине произведения катетов:
То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде
Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:
Поскольку проведенная к гипотенузе высота образует еще два прямоугольных треугольника, ее длину можно найти через соотношения в прямоугольном треугольнике.
Из прямоугольного треугольника ABK
Из прямоугольного треугольника ACK
Длину высоты прямоугольного треугольника можно выразить через длины катетов. Так как
по теореме Пифагора
Если возвести в квадрат обе части равенства:
можно получить еще одну формулу для связи высоты прямоугольного треугольника с катетами:
Видео:Высота прямоугольного треугольникаСкачать
Теорема высота прямоугольном треугольнике
Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать
Высота прямоугольного треугольника
Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным способом в зависимости от данных в условии задачи.
Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле
или, в другой записи,
где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).
Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника
(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:
Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:
Так как площадь прямоугольного треугольника равна половине произведения катетов:
То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде
Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:
Поскольку проведенная к гипотенузе высота образует еще два прямоугольных треугольника, ее длину можно найти через соотношения в прямоугольном треугольнике.
Из прямоугольного треугольника ABK
Из прямоугольного треугольника ACK
Длину высоты прямоугольного треугольника можно выразить через длины катетов. Так как
по теореме Пифагора
Если возвести в квадрат обе части равенства:
можно получить еще одну формулу для связи высоты прямоугольного треугольника с катетами:
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Свойства высоты прямоугольного треугольника
В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.
Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Свойства высоты в прямоугольном треугольнике
Свойство 1
В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.
Третья высота (h3) опускается на гипотенузу из прямого угла.
Свойство 2
Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.
Свойство 3
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.
Аналогичным образом доказывается, что ∠ABD = ∠DAC.
Свойство 4
В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:
1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:
2. Через длины сторон треугольника:
Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :
Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.
Видео:ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном ТреугольникеСкачать
Пример задачи
Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.
Решение
Воспользуемся первой формулой, представленной в Свойстве 4:
Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.
Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.
Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:
Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Высота в прямоугольном треугольнике
Вспомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.
В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.
Один из типов экзаменационных задач банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:
Высота проведена к гипотенузе . Она делит треугольник на два прямоугольных треугольника — и . Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.
Мы помним, что сумма двух острых углов прямоугольного треугольника равна . Значит, , то есть угол равен углу . Аналогично, угол равен углу .
Иными словами, каждый из трех углов треугольника равен одному из углов треугольника (и треугольника ). Треугольники и называются подобными. Давайте нарисуем их рядом друг с другом.
Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?
Возьмем треугольники и . Стороны треугольника длиннее, чем стороны треугольника в раз:
При решении задач нам пригодится равенство углов треугольников и , а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту.
Ты нашел то, что искал? Поделись с друзьями!
1. В треугольнике угол равен , — высота, , . Найдите .
Рассмотрим треугольник . В нем известны косинус угла и противолежащий катет . Зная синус угла , мы могли бы найти гипотенузу . Так давайте найдем :
(поскольку значение синуса острого угла положительно). Тогда:
Рассмотрим прямоугольный треугольник , . Поскольку
2. В треугольнике угол равен , , . Найдите высоту .
Сделайте чертеж и рассмотрите прямоугольный треугольник .
3. В треугольнике угол равен , , . К гипотенузе проведена высота . Найдите .
Это чуть более сложная задача. Ведь вам неизвестны катеты и .
Зато можно записать теорему Пифагора: .
Нам известно также, что:
Решая эту систему из двух уравнений, найдем:
Запишем площадь треугольника АВС двумя способами:
Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений.
📹 Видео
Вычисляем высоту через координаты вершин 1Скачать
КАК НАЙТИ ВЫСОТУ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА, ЕСЛИ ИЗВЕСТЕН ОБЪЕМ, ДЛИНА И ШИРИНА? Пример 5 классСкачать
Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузеСкачать
Определение длины гипотенузыСкачать
Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Построение высоты в треугольникеСкачать
Теорема Пифагора для чайников)))Скачать
КАК НАЙТИ ВЫСОТУ ПРОВЕДЕННУЮ К ГИПОТЕНУЗЕ??Скачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Свойство высоты в прямоугольном треугольникеСкачать
№576. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делитСкачать
Про высоту в прямоугольном треугольникеСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать