Даны векторы а 2i 2j k и b 6i 3j 2k

Задача 22494 3. Даны векторы vector =.
Содержание
  1. Условие
  2. Решение
  3. Даны векторы a = 2i — 3j + k и b = 4i — 2k, где i, j, k единичные взаимно перпендикулярные векторы(орты)?
  4. Даны векторы а (2 ; 5) и в ( — 6 ; у)?
  5. Помогите, пожалуйста какой гугл образует единичные векотры векот а и b если известно что векторы a + 2b и 5a — 4b взаимно перпендикулярны?
  6. Какой угол образуют единичные векторы a и b, если известно, что векторы а + 2b и 5а — 4b взаимно перпендикулярны?
  7. Помогите пожалуйста ) Дан вектор a(вектор)?
  8. Вычислите угол между векторами а = 3m + 2k?
  9. Вектор а(4 ; 2) и вектор в(х ; — 4) Найти х, что бы векторы были перпендикулярны?
  10. Дан куб abcda1b1c1d1?
  11. Даны векторы a( 0?
  12. Докажите, что векторы а(5 ; — 3 ; 4) и b(1 ; 3 ; 1) взаимно перпендикулярны?
  13. Даны взаимно перпендикулярные и прямая а плоскость Сколько прямых можно провести так, из данной точки плоскости a так, чтобы они были перпендикулярны прямой а и лежали в плоскости а ?
  14. Векторное произведение векторов онлайн
  15. Предупреждение
  16. Векторное произведение векторов
  17. Геометрические свойства векторного произведения векторов
  18. Векторное произведение векторов в декартовых координатах
  19. Векторное произведение векторов на примерах
  20. 💥 Видео

Условие

Даны векторы а 2i 2j k и b 6i 3j 2k

3. Даны векторы vector = 2vector-vector+3vector, vector = vector-3vector+2vector, с = 3vector+2vector-4vector. Найти вектор vector, если vector*vector = -5, vector*vector = -11, vector*vector = 20.

Решение

Даны векторы а 2i 2j k и b 6i 3j 2k

Пусть вектор vector=(m;n;p)

Скалярное произведение векторов, заданных своими координатами равно сумме произведений одноименных координат

vector*vector=-11, значит
m-3n+2p=-11

vector*vector=20, значит
3m+2n-4p=20

Умножаем третье на 5, второе на 7
<2m-n+3p=-5
<-35m-49p=28
<35m+10p=50
Складываем второе и третье
-39р=78
р=-2
m=(10-2p)/7=(10+4)/7=2
n=2m+3p+5=2*2+3*(-2)+5=4-6+5=3

Видео:№411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координатыСкачать

№411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координаты

Даны векторы a = 2i — 3j + k и b = 4i — 2k, где i, j, k единичные взаимно перпендикулярные векторы(орты)?

Геометрия | 10 — 11 классы

Даны векторы a = 2i — 3j + k и b = 4i — 2k, где i, j, k единичные взаимно перпендикулярные векторы(орты).

Даны векторы а 2i 2j k и b 6i 3j 2k

A * B = (2i — 3j + k) * (4i — 2k) = 8i ^ 2 — 4ki — 12ji + 6jk + 4ki — 2k ^ 2.

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Даны векторы а (2 ; 5) и в ( — 6 ; у)?

Даны векторы а (2 ; 5) и в ( — 6 ; у).

При каком значении у эти векторы перпендикулярные?

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:Даны векторы а и b и известно, что векторы с и b сонаправленные, требуется найти координаты вектораСкачать

Даны векторы а и b и известно, что векторы с и b сонаправленные, требуется найти координаты вектора

Помогите, пожалуйста какой гугл образует единичные векотры векот а и b если известно что векторы a + 2b и 5a — 4b взаимно перпендикулярны?

Помогите, пожалуйста какой гугл образует единичные векотры векот а и b если известно что векторы a + 2b и 5a — 4b взаимно перпендикулярны?

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:егэ векторы решу егэ все задания №2 профильСкачать

егэ векторы решу егэ все задания №2 профиль

Какой угол образуют единичные векторы a и b, если известно, что векторы а + 2b и 5а — 4b взаимно перпендикулярны?

Какой угол образуют единичные векторы a и b, если известно, что векторы а + 2b и 5а — 4b взаимно перпендикулярны?

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:№928. Даны векторы а {3; 7}, b {-2; 1}, с {6; 14}, d {2; -1}, е {2; 4}.Скачать

№928. Даны векторы а {3; 7}, b {-2; 1}, с {6; 14}, d {2; -1}, е {2; 4}.

Помогите пожалуйста ) Дан вектор a(вектор)?

Помогите пожалуйста ) Дан вектор a(вектор).

Постройте единичный вектор b(вектор) так, чтобы выполнялось равенство a * b = 1.

Всегда ли существует такой вектор b?

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:№925. Даны векторы а {2; 4}, b {-2; 0}, с {0; 0}, d {-2; -3}, е {2; -3}, fСкачать

№925. Даны векторы а {2; 4}, b {-2; 0}, с {0; 0}, d {-2; -3}, е {2; -3}, f

Вычислите угол между векторами а = 3m + 2k?

Вычислите угол между векторами а = 3m + 2k.

В = m + 5k, где m и k — единичные взаимно перпендикулярные векторы.

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:2. Векторы в параллелограмме Решение задач №2Скачать

2. Векторы в параллелограмме Решение задач №2

Вектор а(4 ; 2) и вектор в(х ; — 4) Найти х, что бы векторы были перпендикулярны?

Вектор а(4 ; 2) и вектор в(х ; — 4) Найти х, что бы векторы были перпендикулярны.

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Дан куб abcda1b1c1d1?

Дан куб abcda1b1c1d1.

Перпендикулярны ли векторы ab и сс1.

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Даны векторы a( 0?

Даны векторы a( 0.

5 ) u c( — 1 ; — 4) какие из них взаимно перпендикулярны .

Данные векторы a, b, c, — ненулевые , нужны найти скалярное произведение и узнать какие из них взаимно перпендикулярны.

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:Полный разбор задач с векторами №2 ЕГЭ ПРОФИЛЬ 2024 | Профильная математика ЕГЭ 2024 | УМСКУЛСкачать

Полный разбор задач с векторами №2 ЕГЭ ПРОФИЛЬ 2024 | Профильная математика ЕГЭ 2024 | УМСКУЛ

Докажите, что векторы а(5 ; — 3 ; 4) и b(1 ; 3 ; 1) взаимно перпендикулярны?

Докажите, что векторы а(5 ; — 3 ; 4) и b(1 ; 3 ; 1) взаимно перпендикулярны.

Даны векторы а 2i 2j k и b 6i 3j 2k

Видео:Орт вектора. Нормировать вектор. Найти единичный векторСкачать

Орт вектора.  Нормировать вектор.  Найти единичный вектор

Даны взаимно перпендикулярные и прямая а плоскость Сколько прямых можно провести так, из данной точки плоскости a так, чтобы они были перпендикулярны прямой а и лежали в плоскости а ?

Даны взаимно перпендикулярные и прямая а плоскость Сколько прямых можно провести так, из данной точки плоскости a так, чтобы они были перпендикулярны прямой а и лежали в плоскости а ?

Вы находитесь на странице вопроса Даны векторы a = 2i — 3j + k и b = 4i — 2k, где i, j, k единичные взаимно перпендикулярные векторы(орты)? из категории Геометрия. Уровень сложности вопроса рассчитан на учащихся 10 — 11 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.

Даны векторы а 2i 2j k и b 6i 3j 2k

∠A = 90° ; AB = 4см ; ∠D = 45° ; BC = 5см ; S = (BC + AD) / 2·h ; AB = h ; ⇒(из вершиныС опустить перпендикуляр hна AD) ; полученныйΔ — равнобедренный . AD = BC + AB = 4 + 5 = 9(см) ; S = (5 + 9) / 2·4 = 7·4 = 28(см²).

Даны векторы а 2i 2j k и b 6i 3j 2k

Ответ 1) а) АО + ОВ = АВ б) АО + ОС = АС в) АО + ОС + СД = АД г) АВ + ВС = АС.

Даны векторы а 2i 2j k и b 6i 3j 2k

1)угол D = 30градусов , а сторона лежащая против угла в 30 градусов равно половине гипотенузы, тоестьBD = 12×2 = 22 соотвктственно ас = BD так как это прямоугольник, в а прмоуголиньке диагонали равны 2)ответ 20градусов.

Даны векторы а 2i 2j k и b 6i 3j 2k

O(a ; b) — середина CD a = ( — 3 + 1) / 2 = — 1 b = (3 + 7) / 2 = 5 O( — 1 ; 5) R = 1 / 2 * CD = 1 / 2 * √(1 + 3)² + (7 — 3)² = 1 / 2 * √(16 + 16) = 1 / 2 * 4√2 = 2√2 R² = 8 Уравнение окружности (x — a)² + (y — b)² = R² (x + 1)² + (y — 5)² = 8.

Даны векторы а 2i 2j k и b 6i 3j 2k

Благодаря эхолоту стало возможно изучать большие глубины океана.

Даны векторы а 2i 2j k и b 6i 3j 2k

В сечении имеем треугольник МКТ, подобный SAC. Коэффициент подобия равен 4 / 7. Апофема равна√(21² — (14 / 2)²) = √(441 — 79) = √392 = 14√2. S(SAC) = (1 / 2) * 14 * 14√2 = 98√2 кв. Ед. S(MKT) = (4 / 7)² * (98√2) = (16 / 49) * 98√2 = 32√2 кв. Ед.

Даны векторы а 2i 2j k и b 6i 3j 2k

А) 1 = 80, 2 = 100, 3 = 80 б) 1 = 50, 2 = 130.

Даны векторы а 2i 2j k и b 6i 3j 2k

ΔАОВ — равнобедренный, т. К. R = OA = OB OM — высота, проведённая из вершины равнобедренного треугольника, она же является и медианой и биссектрисой. ∠АОМ = ∠МОВ = 90° : 2 = 45° ⇒ вΔАОМ — угол ОАМ = 90° — 45° = 45° ⇒ ΔОАМ — равнобедренный ⇒ ОМ = АМ..

Видео:Вычислить высоту параллелепипеда, построенного на векторах а=6i+5j−k; b=5i+2j+k; c=i+3j+2k пример 21Скачать

Вычислить высоту параллелепипеда, построенного на векторах а=6i+5j−k; b=5i+2j+k; c=i+3j+2k пример 21

Векторное произведение векторов онлайн

Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:№412. Найдите координаты векторов, противоположных следующим векторам: i, j, k, а {2; 0; 0}, b { — 3Скачать

№412. Найдите координаты векторов, противоположных следующим векторам: i, j, k, а {2; 0; 0}, b { — 3

Векторное произведение векторов

Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.

Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.

Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.

Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.

Определение 2 можно формулировать и по другому.

Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).

Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.

Даны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2k

Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.

Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:

  • длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
    |c|=|[ab]|=|a||b|sinφ;(1)
  • вектор с ортогонален к каждому из векторов a и b;
  • вектор c направлен так, что тройка abc является правой.

Векторное произведение векторов обладает следующими свойствами:

  • [ab]=−[ba] ( антиперестановочность сомножителей);
  • [(λa)b]=λ[ab] ( сочетательность относительно числового множителя);
  • [(a+b)c]=[ac]+[bc] ( распределительность относительно суммы векторов);
  • [aa]=0 для любого вектора a.

Видео:Все 2 задания из Ященко 36 вариантов Векторы. Разбор от АбеляСкачать

Все 2 задания из Ященко 36 вариантов Векторы. Разбор от Абеля

Геометрические свойства векторного произведения векторов

Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.

Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.

Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).

Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.

Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.

Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:

S=|[ab]|=|a||b|sinφ.(2)

Видео:№407. Даны векторы а {3; —5; 2}, b{0; 7; —1}, с {⅔; 0; 0;} и d{ — 2,7; 3,1; 0,5}. НайдитеСкачать

№407. Даны векторы а {3; —5; 2}, b{0; 7; —1}, с {⅔; 0; 0;} и d{ — 2,7; 3,1; 0,5}. Найдите

Векторное произведение векторов в декартовых координатах

Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами

a=<x1, y1, z1>, b=<x2, y2, z2>.

Тогда векторное произведение этих векторов имеет вид:

[ab]=<y1z2y2z1, z1x2z2x1, x1y2x2y1>.(3)

Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:

Даны векторы а 2i 2j k и b 6i 3j 2k

Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).

Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:

Даны векторы а 2i 2j k и b 6i 3j 2k(4)
Даны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2k

Из последнего равенства и соотношений (4), получим:

Даны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2k

которая эквивалентна равенству (3).

Видео:Интенсив ВЕКТОРЫ || День 4 || Координатные методыСкачать

Интенсив ВЕКТОРЫ || День 4 || Координатные методы

Векторное произведение векторов на примерах

Пример 1. Найти векторное произведение векторов [ab], где

Даны векторы а 2i 2j k и b 6i 3j 2k, Даны векторы а 2i 2j k и b 6i 3j 2k.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

Даны векторы а 2i 2j k и b 6i 3j 2k.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

Даны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2k.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

Даны векторы а 2i 2j k и b 6i 3j 2k.

Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: Даны векторы а 2i 2j k и b 6i 3j 2k, конечная точка вектора a: Даны векторы а 2i 2j k и b 6i 3j 2k, вектор b имеет вид Даны векторы а 2i 2j k и b 6i 3j 2k.

Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:

Даны векторы а 2i 2j k и b 6i 3j 2k.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

Даны векторы а 2i 2j k и b 6i 3j 2k.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

Даны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2kДаны векторы а 2i 2j k и b 6i 3j 2k.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

💥 Видео

№404. Даны векторы а {5; —1; 2}, b{-3; -1; 0}, c{0; -1; 0}, d (0; 0; 0). Запишите разложенияСкачать

№404. Даны векторы а {5; —1; 2}, b{-3; -1; 0}, c{0; -1; 0}, d (0; 0; 0). Запишите разложения

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)

Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис
Поделиться или сохранить к себе: