Даны единичные вектора m n и p угол m n равен

Безотлагательно! Даны единичные вектора m, n, и p, такие что m перпендикулярно

СРОЧНО! Даны единичные вектора m, n, и p, такие что m перпендикулярно n, и n перпендикулярно p, а угол меж векторами p и m равен 60. Найдите скалярное произведение (2m+p)(m+2n).

  • Бедтрединова София
  • Математика 2018-12-18 21:17:38 10 1

Даны единичные вектора m n и p угол m n равен

единичные вектора m, n, и p, такие что m перпендикулярно n, и n перпендикулярно p, а угол меж векторами p и m равен 60. Найдите скалярное творенье (2m+p)(m+2n).

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Скалярное произведение векторов

Даны единичные вектора m n и p угол m n равен

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:найти угол между единичными векторамиСкачать

найти угол между единичными векторами

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Даны единичные вектора m n и p угол m n равен

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Даны единичные вектора m n и p угол m n равен

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Даны единичные вектора m n и p угол m n равен

Также векторы могут образовывать тупой угол. Это выглядит так:

Даны единичные вектора m n и p угол m n равен

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Даны единичные вектора m n и p угол m n равен

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Даны единичные вектора m n и p угол m n равен
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

    Нахождение угла между векторами  через координаты. 9 класс.

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Даны единичные вектора m n и p угол m n равен

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Даны единичные вектора m n и p угол m n равен

    Даны единичные вектора m n и p угол m n равен

    то последнее равенство можно переписать так:

    Даны единичные вектора m n и p угол m n равен

    а по первому определению скалярного произведения имеем

    Даны единичные вектора m n и p угол m n равен

    Даны единичные вектора m n и p угол m n равен

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Даны единичные вектора m n и p угол m n равен
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:Единичный векторСкачать

    Единичный вектор

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:Как находить угол между векторамиСкачать

    Как находить угол между векторами

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Даны единичные вектора m n и p угол m n равен

    Даны единичные вектора m n и p угол m n равен

    Даны единичные вектора m n и p угол m n равен

    Видео:Угол между векторами. 9 класс.Скачать

    Угол между векторами. 9 класс.

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Даны единичные вектора m n и p угол m n равен

    По свойству дистрибутивности скалярного произведения имеем

    Даны единичные вектора m n и p угол m n равен

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Даны единичные вектора m n и p угол m n равен

    В силу свойства коммутативности последнее выражение примет вид

    Даны единичные вектора m n и p угол m n равен

    Итак, после применения свойств скалярного произведения имеем

    Даны единичные вектора m n и p угол m n равен

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Даны единичные вектора m n и p угол m n равен

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Даны единичные вектора m n и p угол m n равен



      Введем систему координат.
      Даны единичные вектора m n и p угол m n равен

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Даны единичные вектора m n и p угол m n равен

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Даны единичные вектора m n и p угол m n равен
  • Найдем длины векторов →AB1 и →BC1:
    Даны единичные вектора m n и p угол m n равен
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Даны единичные вектора m n и p угол m n равен
  • Найдем косинус угла между прямыми AB1 и BC1:
    Даны единичные вектора m n и p угол m n равен
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Даны единичные вектора m n и p угол m n равен

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Даны единичные вектора m n и p угол m n равен

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Даны единичные вектора m n и p угол m n равен

    Вычислим скалярное произведение:

    Даны единичные вектора m n и p угол m n равен

    Вычислим длины векторов:

    Даны единичные вектора m n и p угол m n равен

    Найдем косинус угла:

    Даны единичные вектора m n и p угол m n равен

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Даны единичные вектора m n и p угол m n равен

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Даны единичные вектора m n и p угол m n равен

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    Видео:Скалярное произведение векторов. 9 класс.Скачать

    Скалярное произведение векторов. 9 класс.

    СРОЧНО! Даны единичные вектора m, n, и p, такие что m перпендикулярно n, и n перпендикулярно p, а угол между векторами p и m равен 60°. Найдите

    скалярное произведение (2m+p)(m+2n).

    Даны единичные вектора m n и p угол m n равен

    Даны единичные вектора m n и p угол m n равен

    единичные вектора m, n, и p, такие что m перпендикулярно n, и n перпендикулярно p, а угол между векторами p и m равен 60°. Найдите скалярное произведение (2m+p)(m+2n).

    🎦 Видео

    Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

    Понятие вектора. Коллинеарные вектора. 9 класс.

    Координаты вектора. 9 класс.Скачать

    Координаты вектора. 9 класс.

    Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

    Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

    9 класс, 17 урок, Угол между векторамиСкачать

    9 класс, 17 урок, Угол между векторами

    9 класс, 2 урок, Координаты вектораСкачать

    9 класс, 2 урок, Координаты вектора

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Векторное произведение векторов | Высшая математикаСкачать

    Векторное произведение векторов | Высшая математика

    Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

    Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

    Орт вектора. Нормировать вектор. Найти единичный векторСкачать

    Орт вектора.  Нормировать вектор.  Найти единичный вектор

    Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)Скачать

    Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)

    Векторы. Метод координат. Вебинар | МатематикаСкачать

    Векторы. Метод координат. Вебинар | Математика
    Поделиться или сохранить к себе: