С помощью линейки с делениями, циркуля, угольника, транспортира, лекал (рис. 313) вам не раз приходилось проводить различные геометрические построения.
А можно ли обходиться меньшим количеством чертёжных инструментов? Оказывается, что во многих случаях достаточно использовать только циркуль и линейку без делений . Например, чтобы провести биссектрису угла, совсем не обязательно иметь транспортир, а разделить отрезок пополам можно и тогда, когда на линейку не нанесена шкала.
А стоит ли в наше время, когда созданы точнейшие приборы и совершенные компьютерные программы, позволяющие выполнять сложнейшие измерения и построения, обходиться такими скудными средствами, как циркуль и линейка? На практике конечно нет. Поэтому, например, конструкторы, строители, архитекторы, дизайнеры не ограничивают себя в выборе инструментов.
Однако при построении фигур в геометрии принимают такие правила:
1) все построения выполняются только с помощью циркуля и ли нейки без делений ;
2) с помощью линейки можно через заданную точку провести произвольную прямую, а также через заданные две точки A и B провести прямую AB ;
3) с помощью циркуля можно построить окружность с данным центром и радиусом, равным заданному отрезку .
Итак, договоримся, что если в задаче требуется построить какую-то фигуру, то построение выполняется по описанным выше правилам.
Решить задачу на построение — это значит составить план ( алгоритм ) построения фигуры; реализовать план, выполнив построение; доказать, что полученная фигура является искомой.
Рассмотрим основные задачи на построение.
Задача 1. Постройте угол, равный данному, одна из сторон которого является данным лучом.
Решение. На рисунке 314 изображены угол A и луч OK . Надо построить угол, равный углу A , одной из сторон которого является луч OK .
Проведём окружность произвольного радиуса r с центром в точке A . Точки пересечения этой окружности со сторонами угла A обозначим B и С (рис. 315). Тогда AB = AC = r .
Проведём окружность радиуса r с центром в точке O . Она пересекает луч OK в точке M (рис. 316, a ). Затем проведём окружность с центром в точке M и радиусом BC . Пусть E и F — точки пересечения окружностей с центрами O и M (рис. 316, б ). Проведём лучи ОЕ и OF (рис. 316, в ).
Покажем, что каждый из углов EOM и FOM — искомый. Докажем, например, что ∠ EOM = ∠ BAC .
Рассмотрим треугольники ABC (рис. 315) и OEM (рис. 316, в ). Имеем: AB = OE = r = AC = OM . Кроме того, по построению EM = BC . Следовательно, треугольники ABC и OEM равны по третьему признаку равенства треугольников. Отсюда ∠ EOM = ∠ BAC . Аналогично можно показать, что ∠ BAC = ∠ FOM .
Замечание. Мы построили два угла ЕОМ и FOM , удовлетворяющие условию задачи. Эти углы равны. В таких случаях считают, что задача на построение имеет одно решение.
Задача 2. Постройте серединный перпендикуляр данного отрезка.
Решение. Пусть AB — данный отрезок (рис. 317, а ). Проведём две окружности с центрами A и B и радиусом AB . Точки пересечения этих окружностей обозначим M и N (рис. 317, б ). Проведём прямую MN (рис. 317, в ).
Из построения следует, что MA = MB = AB и NA = NB = AB (рис. 317, г ). Следовательно, точки M и N принадлежат серединному перпендикуляру отрезка AB . Прямая MN и является серединным перпендикуляром отрезка AB .
Видео:№688. Даны угол и отрезок. Постройте точку, лежащую внутри данного угла, равноудаленнуюСкачать
Метод вращения
Указание. Пусть KLMP — искомый квадрат. Тогда центр О квадрата совпадает с центром параллелограмма. Повернем всю фигуру вокруг точки О на 90°; при этом точка М перейдет в точку Р, прямая I (11AD, Mel) перейдет в V, точка Я (ОЯ 1 I, Я е I) перейдет в Я’. Отсюда, выполняя обратный поворот на 90°, можно получить точку М (так как ОН _L Z), а следовательно, получим диагонали КМ и PL.
6.3. Даны две окружности Оа(га) и 02(г2), точка М и угол а. Построить равнобедренный треугольник АВС (АВ = АС) так, чтобы угол А равнялся а, вершина А совпадала с точкой М, а две другие вершины лежали бы на окружностях 01(г1) и 02(г2).
Указание. Повернуть вокруг точки М одну из данных окружностей на угол а и найти точки пересечения с другой окружностью. Задача может иметь одно, два или ни одного решения.
- 6.4. Даны точка А, прямая а и окружность О (г). Построить равносторонний треугольник с вершиной в точке А так, чтобы другие его вершины лежали соответственно на прямой а и окружности О (г).
- 6.5. В данный квадрат ABCD вписать равносторонний треугольник, одна из вершин которого дана на стороне квадрата.
- 6.6. Даны две прямые: р и q и точка А. Построить равносторонний треугольник так, чтобы одна его вершина совпадала с точкой А, а две другие лежали на прямых р ид.
- 6.7. На двух данных отрезках найти такую пару точек, что поворот вокруг данной точки на 45° отображает одну точку пары на другую.
- 6.8. Указать соответственно на данных прямой и отрезке такие две точки, чтобы одну из них можно было бы отобразить на другую поворотом вокруг данной точки на 30°.
- 6.9. На данных окружности и прямой найти такие пары точек, что одна точка является образом другой при повороте вокруг данной точки на 72°.
- 6.10. Даны полоса с краями а и Ъ и точка Р, принадлежащая этой полосе (Р g а, Р € Ь). Найти на ее краях а и b соответственно такие точки А и В, что РА = РВ и ZAPB = 90°.
- 6.11. Даны окружности (С^; 3 см), (02; 4 см) и точкам. Найти на данных окружностях соответственно точки А и В такие, чтобы AM = МВ и ZAMB = 60°.
- 6.12. На прямыху = Зх + 1 и у = -2х + 3 найти соответственно точки А и В, чтобы они находились на одинаковом расстоянии от начала координат и ZAOB = 90°.
- 6.13. Даны окружность и треугольник. Построить такой отрезок, чтобы концы его принадлежали данным окружности и сторонам треугольника, находились на одинаковом расстоянии от данной точки и были видны из нее под углом 120°.
- 6.14. Даны произвольный треугольник АВС и точка Р, принадлежащая внутренней области треугольника. Указать на сторонах ВС и АС соответственно точки К и М такие, что РК = КМ и ZKPM = 45°.
- 6.15. Построить равносторонний треугольник так, чтобы одной его вершиной была данная точка Р, другая принадлежала данной прямой а, третья — прямой Ъ.
- 6.16. Даны угол и точка А внутри него. Построить равнобедренный прямоугольный треугольник, вершиной прямого угла которого является точка А, а две другие вершины принадлежат сторонам данного угла.
- 6.17. Даны окружность, квадрат и точка Р. Построить равнобедренный треугольник РАВ (РА = РВ), вершины А и В которого принадлежат окружности и стороне квадрата, a ZAPB = 45°.
- 6.18. Построить равносторонний треугольник так, чтобы его вершины принадлежали трем данным параллельным прямым.
- 6.19. Даны полоса с краями а и с и прямая Ь, принадлежащая полосе. Построить ромб ABCD так, чтобы его вершины А, В и С принадлежали соответственно прямым а,Ь и с, a ZABC = 60°.
- 6.20. Построить квадрат так, чтобы три его вершины принадлежали трем данным прямым.
- 6.21. Построить равнобедренный прямоугольный треугольник так, чтобы вершины его острых углов принадлежали данным окружностям, а вершиной прямого угла являлась данная точка.
- 6.22. В данный квадрат вписать равносторонний треугольник так, чтобы одна из его вершин совпала с вершиной квадрата, а две другие принадлежали сторонам квадрата.
- 6.23. На сторонах АВ и АС треугольника АВС построены квадраты ABNM и ACQP, расположенные с треугольником АВС в различных полуплоскостях соответственно с границами АВ и АС. Доказать, что: а) МС = ВР; б) МС1 ВР.
- 6.24. Дан квадрат ABCD. Через центр этого квадрата проведены две взаимно перпендикулярные прямые, отличные от прямых АС и BD. Доказать, что фигуры, являющиеся пересечением этих прямых с квадратом, равны.
- 6.25. Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны. Доказать, что эти отрезки равны.
- 6.26. Земельный участок квадратной формы был огорожен. От изгороди сохранились четыре столба на сторонах квадрата. Восстановить границу участка.
- 6.27. Через центр равностороннего треугольника проведены две прямые, угол между которыми равен 60° и которые не содержат вершин треугольника. Доказать, что отрезки этих прямых, заключенные между сторонами треугольника, равны.
- 6.28. На сторонах АВ и ВС треугольника АВС построены квадраты ABMN и BCPQ, причем квадрат ABMN и треугольник АВС принадлежат различным полуплоскостям с границей АВ, а квадрат BCPQ и треугольник АВС — одной полуплоскости с границей ВС. Доказать, что MQ1AC и MQ = AC.
- 6.29. На сторонах АВ, ВС, CD и DA квадрата ABCD от вершин А, В, С и D отложены конгруэнтные отрезки АА,, ВВ,, ССХ и DD,. Доказать, что четырехугольник A1B1C1D1 — квадрат.
- 6.30. Хорды одной и той же окружности находятся на одинаковом расстоянии от центра окружности. Доказать, что они равны.
- 6.31. Даны две перпендикулярные прямые и точка, не принадлежащая им. Построить равносторонний треугольник с вершиной в данной точке и с двумя другими вершинами на данных прямых.
- 6.32. Построить равносторонний треугольник так, чтобы одной его вершиной была данная точка Р, другая принадлежала данной прямой а, третья — прямой Ь.
- 6.33. Построить равносторонний треугольник, имеющий одной своей вершиной данную точку А, а две другие вершины — на данных параллельных прямых.
- 6.34. Даны две параллельные прямые а, b и точка А, не принадлежащая им. Построить равнобедренный треугольник с данным углом а, вершина которого находится в данной точке А, а вершины основания лежат на прямых а и Ь.
- 6.35. Даны три параллельные прямые а, Ь, с. Построить равносторонний треугольник АВС, вершины которого лежат на данных прямых.
- 6.36. Построить равносторонний треугольник, вершины которого лежат на трех параллельных прямых, а центр — на четвертой прямой, не параллельной трем заданным.
- 6.37. В данный квадрат вписать равносторонний треугольник.
- 6.38. Построить квадрат так, чтобы три его вершины лежали на трех данных параллельных прямых.
- 6.39. Построить квадрат так, чтобы три его вершины принадлежали трем данным пересекающимся прямым.
- 6.40. Из данной точки Р, как из центра, описать дугу окружности так, чтобы концы ее лежали на двух данных окружностях, а градусная мера ее была равна градусной мере данного угла.
- 6.41. Даны две прямые, точка О и угол а. Провести такую окружность с центром О, чтобы одна из дуг этой окружности, концы которой принадлежат данным прямым, по угловой мере была равна а.
- 6.42. Даны две окружности и точка М. Построить равносторонний треугольник MNP, вершины которого N и Р принадлежат данным окружностям.
- 6.43. Даны три концентрические окружности. Построить равносторонний треугольник, вершины которого принадлежат этим окружностям.
- 6.44. Даны окружность, квадрат и точка Р. Построить равнобедренный треугольник РАВ (РА = РВ), вершины А и В которого принадлежат окружности и стороне квадрата, a ZAPB = 45°.
- 6.45. Даны угол и внутри него точка Л. Построить равнобедренный прямоугольный треугольник, вершина прямого угла которого совпадает с точкой А, а две другие вершины принадлежат сторонам угла.
- 6.46. Построить равнобедренный прямоугольный треугольник так, чтобы вершины его острых углов принадлежали данным окружностям, а вершиной прямого угла являлась данная точка.
- 6.47. Построить квадрат ABCD по его центру О и двум точкам М и N, принадлежащим прямым ВС и CD.
- 6.48. Построить квадрат ABCD по вершине А и двум точкам М и N, принадлежащим прямым ВС и CD.
- 6.49. На окружности с центром в точке О найти две такие точки С и D, что ZCOD = а, АС || BD, где А и В — две данные точки; а — величина данного угла.
- 6.50. Построить треугольник АВС, зная три точки, являющиеся центрами квадратов, построенных на сторонах треугольника, вне его.
- 6.51. Даны четыре точки К, L, М и N. Построить квадрат, стороны которого или их продолжения проходят через эти четыре точки.
- 6.52. Даны четыре точки К, L, М и N, расположенные на одной прямой. Построить квадрат, у которого продолжения двух противоположных сторон пересекают эту прямую в точках К и L, а продолжения двух других сторон — в точках М и N.
Видео:Окружность данного радиуса, проходящей через две заданные точкиСкачать
Геометрия. 7 класс
Конспект урока
Окружность. Задачи на построение
Перечень рассматриваемых вопросов:
- Геометрическое место точек, примеры ГМТ.
- Изображение на рисунке окружности и ее элементов.
- Решение задач на построение.
- Выполнение построений прямого угла, отрезка, угла равного данному, биссектрисы угла, перпендикулярных прямых, середины отрезка с помощью циркуля и линейки.
Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.
Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.
Хорда – отрезок, соединяющий две точки окружности.
Диаметр – хорда, проходящая через центр окружности.
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М.А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М.А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Ранее мы узнали некоторые геометрические фигуры, например, угол, отрезок, треугольник, научились их строить и измерять. Сегодня мы введём определение ещё одной фигуры – окружности, рассмотрим её элементы и выполним построения геометрических фигур с помощью циркуля и линейки.
Для начала дадим определение геометрической фигуры, называемой окружностью.
Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.
Но можно использовать и другое определение окружности.
Окружность ‑ это геометрическое место точек, удалённых на одно и то же расстояние от точки, называемой центром окружности. Это расстояние называют радиусом окружности. В нашем случае точки О.
При этом стоит пояснить, что геометрическое место точек – это фигура речи, употребляемая в математике для определения геометрической фигуры, как множества всех точек, обладающих некоторым свойством.
Вспомним элементы окружности.
Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.
По определению окружности все её радиусы имеют одну и ту же длину. OM = OA
Отрезок, соединяющий две точки окружности, называется хордой.
Хорда, проходящая через центр окружности, называется диаметром.
O – середина диаметра.
Любые две точки окружности делят её на две части. Каждая из этих частей называется дугой окружности.
AMB, ALB – дуги окружности.
Построим окружность радиусом 3 см. Для этого поставим точку О. Возьмём циркуль и выставим с помощью линейки расстояние между ножками циркуля, равное 3 см. Поставим иголочку циркуля в точку О и построим окружность, вращая ножку циркуля с грифелем вокруг этой точки. Грифель описывает замкнутую кривую линию, которую называют окружностью.
Часть плоскости, которая лежит внутри окружности, вместе с самой окружностью, называют кругом, т. е. окружность ‑ граница круга.
Итак, мы можем с помощью циркуля строить окружность, но с его помощью можно построить и угол равный данному. Для построения воспользуемся ещё и линейкой.
Построить: EOМ = A.
1. Окр. (A; r), r – произвольный радиус.
2. Окр. (A; r) ∩ AB = B.
3. Окр. (A; r) ∩ AС = С.
4. Окр. (O; r) ∩ OM = D.
5. Окр. (D; BС) ∩ Окр. (O; r) = E
6. OЕ, ЕОD = BAC (из равенства ∆ОЕD и ∆ABC). EOM – искомый.
Теперь выполним построение биссектрисы угла.
Построить: AE – биссектриса CAB.
- Окр. (A; r), r – произвольный радиус.
- Окр. (A; r) ∩ AB = B.
- Окр. (A; r) ∩ AC = C.
- Окр. (C; CB) ∩ Окр. (B; CB) = E.
- AE – искомая биссектриса BAC, т. к. ABE =CBE (из равенства ∆ACE и ∆ABE).
Рассмотрим ещё одно построение с помощью циркуля и линейки. Построим середину отрезка АВ.
Для этого построим две окружности с центрами на концах отрезка , т. е. в точках А и В. Окружности пересекутся в точках Р и Q. Проведём прямую через точки Р и Q. Прямая РQ пересечёт прямую АВ в точке О, которая и будет являться искомой серединой отрезка АВ. Докажем это. Для этого рассмотрим ∆APQ и ∆BPQ. Они равны по трём сторонам, следовательно, ∠1 = ∠2, поэтому РО– биссектриса равнобедренного ∆АВР, а соответственно РО ещё и медиана. Следовательно, точка О – середина отрезка АВ.
Разбор заданий тренировочного модуля.
№ 1. АВ и СК – диаметры окружности, с центром в точке О. По какому признаку равенства треугольников равны треугольники АОС и ОКВ?
Так как О – центр окружности, то точка О делит диаметры пополам, следовательно отрезки АО, ОВ, ОС, ОК равны. ∠СОА = ∠КОВ (как вертикальные). Поэтому треугольники АОС и ОКВ равны по первому признаку равенства треугольников (по двум сторонам и углу между ними).
Ответ: 1 признак равенства треугольников.
№ 2. На рисунке O – центр окружности, АВ – диаметр окружности. Отрезки АD и ВС, перпендикулярны к отрезку АВ. АВ = 8 см, ОС = 5 см, СВ = 3 см. Чему равен периметр ∆AOD?
Периметр треугольника AOD равен сумме сторон АО, AD, DO. Найдём эти стороны.
По условию O – центр окружности, то она делит диаметр пополам, следовательно отрезок АО равен отрезку ОВ, т. е. АО = АВ:2 = 8 см :2 = 4 см.
По условию отрезки АD и ВС, перпендикулярны к отрезку АВ, следовательно ∠СВО = ∠ОАD = 90°, ∠АОD = ∠СОВ (как вертикальные). Поэтому ∆АОD = ∆СОВ (по 2 признаку равенства треугольников). Следовательно, AD = СВ = 3 см, DO = ОС = 5 см.
Р∆AOD = АО + AD + DO = 4 см + 3 см + 5 см = 12 см.
🎥 Видео
№148. На прямой даны две точки А и В. На продолжении луча ВА отложите отрезок ВС так, чтобы ВС= 2АВ.Скачать
№ 153 - Геометрия 7-9 класс АтанасянСкачать
№150. Даны окружность, точка А, не лежащая на ней, и отрезок PQ. Постройте точку М на окр-тиСкачать
№962. Даны окружность х2 + у2 = 25 и две точки А(3; 4) и В (4; -3).Скачать
№416. Даны две точки А и В, симметричные относительно некоторой прямой, и точка М.Скачать
№151. Даны острый угол ВАС и луч XY. Постройте угол YXZ так, чтобы ∠YXZ = 2∠BAC.Скачать
№149. Даны прямая а, точка В, не лежащая на ней, и отрезок PQ. Постройте точку М на прямой a такСкачать
Внешнее сопряжение дуги и прямой дугой заданного радиуса. Урок16.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Внешнее сопряжение двух дуг окружностей третьей дугой. Урок13.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
№270. Внутри угла дана точка А. Постройте прямую, проходящую через точку А и отсекающуюСкачать
Точка, прямая и отрезок. 1 часть. 7 класс.Скачать
№687. Даны прямая а и две точки А и В, лежащие по одну сторону от этой прямой. На прямой а постройтеСкачать
1 2 4 сопряжение окружностейСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Уравнение окружности (1)Скачать
10 класс, 11 урок, Числовая окружностьСкачать
№ 150 - Геометрия 7-9 класс АтанасянСкачать
Внутреннее сопряжение двух дуг окружностей третьей дугой. Урок14.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать