Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Дана правильная четырехугольная пирамида SABCD. Плоскость α параллельна прямой АС, проходит через точку В и середину высоты пирамиды.

а) Докажите, что плоскость α делит ребро SD в отношении 2 : 1, считая от точки D.

б) Найдите синус угла между плоскостью α и плоскостью ASC, если угол SAC равен 30°.

а) Пусть K — середина высоты пирамиды SO. Прямая BK лежит в плоскости α и в плоскости SBD, содержащей высоту SO. Тогда точка L является точкой пересечения BK с SD и плоскости α и SD. По теореме Менелая для треугольника SDO и прямой BL имеем:

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

б) Проведем через точку K среднюю линию MN треугольника SAC. Прямая MN параллельна AC, следовательно, лежит в плоскости. Таким образом, MN — линия пересечения плоскости α и плоскости ASC. Очевидно, что треугольник BMN — равнобедренный, следовательно, отрезки BK и MN взаимно перпендикулярны. Прямые SO и AC перпендикулярны, следовательно, прямые SO и MN также взаимно перпендикулярны. Таким образом, угол BKO является линейным углом искомого угла между плоскостью α и плоскостью ASC. Обозначим высоту пирамиды SO = 2h. Тогда Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acДалее находим,

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Ответ: б) Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Критерии оценивания выполнения заданияБаллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Дана правильная четырёхугольная пирамида МABCD, все рёбра которой равны 6.Точка N–середина ребра МА.Скачать

Дана правильная четырёхугольная пирамида МABCD, все рёбра которой равны 6.Точка N–середина ребра МА.

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Видео:№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1Скачать

№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

Видео:ЕГЭ Задание 14 Правильная четырехугольная пирамида Площадь сеченияСкачать

ЕГЭ Задание 14 Правильная четырехугольная пирамида Площадь сечения

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

Видео:Стереометрия, номер 28.1Скачать

Стереометрия, номер 28.1

Проверочная работа «13 задание ПРОФИЛЬ ЕГЭ математика»

Видео:СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

ПРОФИЛЬ ЕГЭ математика

1. Дана правильная четырехугольная пирамида SABCD. Плоскость α параллельна прямой АС, проходит через точку В и середину высоты пирамиды.

а) Докажите, что плоскость α делит ребро SD в отношении 2 : 1, считая от точки D.

б) Найдите синус угла между плоскостью α и плоскостью ASC, если угол SAC равен 30°.

2. Боковое ребро правильной треугольной пирамиды SABC равно 6, а косинус угла ASB при вершине боковой грани равен Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acТочка M — середина ребра SC, точка Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac— середина ребра AC.

а) Докажите, что угол между прямыми BM и SA равен углу BMN.

б) Найдите косинус угла между прямыми BM и SA.

3. В основании правильной пирамиды PABCD лежит квадрат ABCD со стороной 9. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.

а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.

б) Найдите площадь сечения пирамиды.

4. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 4 и диагональю BD = 7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

5. В конус, радиус основания которого равен 6, вписан шар радиуса 3.

а) Изобразите осевое сечение комбинации этих тел.

б) Найдите отношение площади полной поверхности конуса к площади поверхности шара.

6. В пирамиде SABC в основании лежит правильный треугольник ABC со стороной Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acТочка O — основание высоты пирамиды, проведённой из вершины S.

а) Докажите, что точка O лежит вне треугольника ABC.

б) Найдите объём четырёхугольной пирамиды SABCO.

7. Точка M середина ребра AB правильного тетраэдра DABC.

а) Докажите, что ортогональная проекция точки M на плоскость ACD лежит на медиане AP грани ACD.

б) Найдите угол между прямой DM и плоскостью ACD.

8. Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Грань ACC1A1 является квадратом.

а) Докажите, что прямые CA1 и AB1 перпендикулярны.

б) Найдите расстояние между прямыми CA1 и AB1, если AC = 4, BC = 7.

9. Длины всех ребер правильной четырёхугольной пирамиды PABCD с вершиной P равны между собой. Точка M — середина бокового ребра пирамиды AP.

а) Докажите, что плоскость, проходящая через точки B и M и перпендикулярная плоскости BDP, делит высоту пирамиды пополам.

б) Найдите угол между прямой BM и плоскостью BDP.

а) Докажите, что B1KLM — правильная пирамида.

ПРОФИЛЬ ЕГЭ математика

1. Точки A, B и C лежат на окружности основания конуса с вершиной S, причём A и C диаметрально противоположны. Точка M — середина BC.

а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если AB = 4, BC = 6 и Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

2. В кубе ABCDA1B1C1D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.

3. В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О. Точка N — середина ребра SC, точка L — середина ребра SA.

а) Докажите, что плоскость BNL делит ребро SD в отношении 1 : 2, считая от вершины S.

б) Найдите угол между плоскостями BNL и АВС, если пирамида правильная, SA = 8, а тангенс угла между боковым ребром и плоскостью основания пирамиды равен Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

4. Основание ABCD призмы Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac— трапеция с основаниями AB = 2CD.

а) Докажите Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acпроходит через середину бокового ребра Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

б) Найдите угол между боковым ребром Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acи этой плоскостью, если призма прямая, трапеция ABCD прямоугольная с прямым углом при вершине B, а BC = CD и Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

5. В правильной треугольной пирамиде SABC сторона основания AB равна 9, а боковое ребро SA = 6. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK : KB = SM : MC = 2 : 7. Плоскость α содержит прямую KM и параллельна прямой SA.

а) Докажите, что плоскость α делит ребро SB в отношении 2 : 7, считая от вершины S.

б) Найдите расстояние между прямыми SA и KM.

6. Сторона правильной треугольной призмы ABCA1B1C1 равна 8. Высота этой призмы равна 6.

а) Докажите, что плоскость, содержащая прямую Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acи параллельная прямой Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acделит пополам ребро Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

7. Дана треугольная пирамида DABC, точки M, N, P и Q лежат на рёбрах AB, BC, AD, CD, причём AM : MB = CN : NB = 3 : 1. Точки P и Q — середины рёбер DA и DC соответственно.

а) Докажите, что точки P, Q, M и N лежат в одной плоскости.

б) Найдите отношение многоугольников на которые делит плоскость PQM пирамиду.

8. ABCA 1 B 1 C 1 — правильная призма, сторона AB равна 16. Через точки M и P, лежащие на рёбрах AC и BB1 соответственно, проведена плоскость α, параллельная прямой AB. Сечение призмы этой плоскостью — четырёхугольник, одна сторона которого равна 16, а три другие равны между собой.

а) Докажите что периметр сечения призмы плоскостью α больше 40.

б) Найдите расстояние от точки A до плоскости α, если упомянутый периметр равен 46.

9. В правильной треугольной призме ABCA1B1C1 сторона основания Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acа боковое ребро AA1 = 5.

а) Найдите длину отрезка A1K, где K — середина ребра BC.

10. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 4 и диагональю BD = 7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

ПРОФИЛЬ ЕГЭ математика

б) Найдите угол между плоскостью α и плоскостью ADD1.

2. В правильном тетраэдре MNPQ через биссектрисы NA и QB граней MNP и QNP проведены параллельные плоскости.

а) Найдите отношение суммы объемов отсекаемых от MNPQ тетраэдров к объему MNPQ

б) Найдите расстояние между NA и QB, если ребро тетраэдра равно 1.

а) Докажите, что прямые B1P и QB перпендикулярны.

б) Найдите площадь сечения куба плоскостью, проходящей через точку P и перпендикулярной прямой BQ, если ребро куба равно 10.

4. В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.

5. Дана треугольная пирамида DABC, точки M, N, P и Q лежат на рёбрах AB, BC, AD, CD, причём AM : MB = CN : NB = 3 : 1. Точки P и Q — середины рёбер DA и DC соответственно.

а) Докажите, что точки P, Q, M и N лежат в одной плоскости.

б) Найдите отношение многоугольников на которые делит плоскость PQM пирамиду.

6. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB = 12 и Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acДлины боковых рёбер пирамиды SA = 5, SB = 13, SD = 10.

а) Докажите, что SA — высота пирамиды.

б) Найдите расстояние от вершины A до плоскости SBC.

7. а) Дан прямоугольный параллелепипед Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acДокажите, что все грани тетраэдра Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac— равные треугольники (тетраэдр, обладающий таким свойством, называют равногранным).

8. В правильной треугольной призме ABCA1B1C1 все рёбра равны 1.

а) Докажите, что прямая AB1 параллельна прямой, проходящей через середины отрезков AC и BC1.

б) Найдите косинус угла между прямыми AB1 и BC1.

9. Прямоугольник ABCD и цилиндр расположены таким образом, что AB — диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности, при этом плоскость прямоугольника наклонена к плоскости основания цилиндра под углом 60°.

а) Докажите, что ABCD — квадрат.

б) Найдите длину той части отрезка BD, которая находится снаружи цилиндра, если радиус цилиндра равен Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью EFT и плоскостью BB1C1.

ПРОФИЛЬ ЕГЭ математика

а) В каком отношении плоскость ETD1 делит ребро BB1?

б) Найдите угол между плоскостью ETD1 и плоскостью AA1B1.

2. В основании прямой треугольной призмы ABCA1B1C1 лежит равнобедренный треугольник ABC с основанием AC. Точка K — середина ребра A1B1, а точка M делит ребро AC в отношении AM : MC = 1 : 3.

а) Докажите, что KM перпендикулярно AC.

б) Найдите угол между прямой KM и плоскостью ABC, если AB = 12, AC = 16 и AA1 = 6.

3. В треугольной пирамиде SABC известны боковые рёбра: Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acОснованием высоты этой пирамиды является середина медианы CM треугольника ABC. Эта высота равна 4.

а) Докажите, что треугольник ABC равнобедренный.

б) Найдите объём пирамиды SABC.

4. В основании правильной треугольной призмы ABCA1B1C1лежит треугольник со стороной 6. Высота призмы равна 4. Точка N — середина ребра A1C1.

а) Постройте сечение призмы плоскостью BAN.

б) Найдите периметр этого сечения.

5. В основании MABCD лежит прямоугольник ABCD со сторонами AB = 4 и BC = Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acвсе боковые ребра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка Е, а на ребрах AM и AB — точка F и G соответственно так, что MF = BE = BG = 3.

а) Докажите, что плоскость GEF проходит через точку C.

б) Найдите длину отрезка, по которому плоскость GEF пересекает грань CMD пирамиды.

6. Длина ребра правильного тетраэдра ABCD равна 1. M — середина ребра BC, L — середина ребра AB.

а) Докажите, что плоскость, параллельная прямой CL и содержащая прямую DM, делит ребро AB в отношении 3 : 1, считая от вершины A.

б) Найдите угол между прямыми DM и CL.

7. Дана пирамида SABC, в которой Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой ac

а) Докажите, что ребро SA перпендикулярно ребру BC.

б) Найдите расстояние между ребрами BC и SA.

8. Радиус основания конуса равен 12, а высота конуса равна 5.

а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.

б) Найдите расстояние от плоскости сечения до центра основания конуса.

9. В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB = 6, а боковое ребро Дана правильная четырехугольная пирамида sabcd плоскость a параллельна прямой acНа рёбрах AB, A1D1 и C1D1 отмечены точки M, N и K соответственно, причём AM = A1N = C1K = 1.

а) Пусть L — точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL — квадрат.

б) Найдите площадь сечения призмы плоскостью MNK.

10. В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 4, точка N — середина ребра AC, точка O центр основания пирамиды, точка P делит отрезок SO в отношении 3 : 1, считая от вершины пирамиды.

а) Докажите, что прямая NP перпендикулярна прямой BS.

б) Найдите расстояние от точки B до прямой NP.

🌟 Видео

Урок 08. Расстояние между прямыми в четырехугольной пирамиде (Задача ЕГЭ)Скачать

Урок 08. Расстояние между прямыми в четырехугольной пирамиде (Задача ЕГЭ)

Сечение Пирамиды Плоскостью Параллельной боковому ребруСкачать

Сечение Пирамиды Плоскостью Параллельной боковому ребру

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Правильная четырехугольная пирамида. Площадь сечения. Задание 14 (27)Скачать

Правильная четырехугольная пирамида. Площадь сечения. Задание 14 (27)

Угол между прямыми, плоскостями, прямой и плоскостью | Математика ЕГЭ для 10 класса | УмскулСкачать

Угол между прямыми, плоскостями, прямой и плоскостью | Математика ЕГЭ для 10 класса | Умскул

Построение сечения пирамиды по трем точкамСкачать

Построение сечения пирамиды по трем точкам

Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

10 класс, 33 урок, Правильная пирамидаСкачать

10 класс, 33 урок, Правильная пирамида

Задача 14. Вариант 1. ЕГЭ по математике.Скачать

Задача 14. Вариант 1. ЕГЭ по математике.

10 класс, 14 урок, Задачи на построение сеченийСкачать

10 класс, 14 урок, Задачи на построение сечений

🙂 Площадь поверхности правильной пирамидыСкачать

🙂 Площадь поверхности правильной пирамиды

02. Построение прямой пересечения двух плоскостейСкачать

02. Построение прямой пересечения двух плоскостей

Стереометрия с нуля и до уровня ЕГЭ за 4 часа | Вся теория и задачи по №13 | Математика профильСкачать

Стереометрия с нуля и до уровня ЕГЭ за 4 часа | Вся теория и задачи по №13 | Математика профиль

Задание 5. ЕГЭ профиль. ПИРАМИДА.Скачать

Задание 5. ЕГЭ профиль. ПИРАМИДА.

Правильная четырехугольная пирамида. Угол между прямой и плоскостью. Задание 14. (28)Скачать

Правильная четырехугольная пирамида. Угол между прямой и плоскостью. Задание 14. (28)
Поделиться или сохранить к себе: