Что является центром описанной окружности около правильного многоугольника

Что является центром описанной окружности около правильного многоугольника

Ключевые слова: многоугольник, правильный многоугольник, сторона, угол, вписанная, описанная окружность

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон.

Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра.

Что является центром описанной окружности около правильного многоугольника

Что является центром описанной окружности около правильного многоугольника
См. также:
Вписанная окружность, Описанная окружность, Выпуклый четырёхугольник, Произвольный выпуклый многоугольник

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Правильные многоугольники

Вы будете перенаправлены на Автор24

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Понятие правильного многоугольника

Правильный многоугольник — выпуклый многоугольник, у которого все стороны и все углы равны между собой (Рис. 1).

Что является центром описанной окружности около правильного многоугольника

Рисунок 1. Правильные многоугольники

Как мы знаем, сумма углов многоугольника находится по формуле$(n-2)cdot ^0$

Значит, градусная мера одного угла правильного многоугольника равняется

Видео:110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Теорема об описанной около правильного многоугольника окружности

Около любого правильного многоугольника можно описать единственную окружность.

Доказательство.

Существование. Пусть нам дан правильный многоугольник $A_1A_2A_3dots A_n$. Пусть биссектрисы углов $A_1 и A_2$ пересекаются в точке $O$. Соединим с этой точкой все остальные вершины правильного многоугольника (Рис. 2).

Что является центром описанной окружности около правильного многоугольника

Рисунок 2. Описанная вокруг правильного многоугольника окружность

Так как углы $A_1 и A_2$ равны и $A_1O и A_2O$ — биссектрисы, то угол $OA_1A_2$ равен углу $O_1$. Следовательно, треугольник $OA_1A_2$ равнобедренный, и, значит, $A_1O=A_2O$.

Так как $A_1A_2=A_2A_3$, $angle O_1=angle O_3$ и сторона $A_2O$ — общая, то треугольники $O_1$ и $O_3$ равны. Следовательно, $OA_2=OA_3$.

Аналогично доказывают другие равенства. В результате, будем иметь

То есть точка $O$ равноудалена от всех вершин многоугольника, а, значит, точка $O$ — центр описанной вокруг правильного многоугольника окружности.

Единственность. Рассмотрим три вершины многоугольника. Очевидно, что через них проходит только одна окружность, следовательно, вокруг правильного многоугольника можно описать только одну окружность.

Готовые работы на аналогичную тему

Теорема доказана.

Теорема вписанной в правильный многоугольник окружности

В любой правильный многоугольник можно вписать единственную окружность.

Доказательство.

Пусть нам дан правильный многоугольник $A_1A_2A_3dots A_n$. Пусть точка $O$ — центр описанной вокруг данного многоугольника окружности (Рис. 3).

Что является центром описанной окружности около правильного многоугольника

Рисунок 3. Вписанная в правильный многоугольник окружность

Так как углы $A_1 и A_2$ равны и $A_1O и A_2O$ — биссектрисы, то угол $OA_1A_2$ равен углу $O_1$. Следовательно, треугольник $OA_1A_2$ равнобедренный, и, значит, $A_1O=A_2O$.

Так как $A_1A_2=A_2A_3$, $angle O_1=angle O_3$ и сторона $A_2O$ — общая, то треугольники $O_1$ и $O_3$ равны.

Аналогично доказывается равенство других треугольников. То есть, мы получим

Значит и высоты этих треугольников равны между собой

Тогда окружность с центром в точке $O$ и радиусом, равным $_1$ проходит через точки $H_1, H_2,dots ,H_n$, то есть касается всех сторон данного многоугольника. Следовательно. Является вписанной для правильного многоугольника.

Единственность. Предположим противное. Пусть существует еще одна вписанная в этот многоугольник окружность. Обозначим её центр $O’$. Тогда $O’$ равноудалена от всех сторон многоугольника, а значит лежит в точке пересечения биссектрис его углов. Но тогда точка $O’$ совпадает с точкой $O$ и, следовательно, эти окружности также совпадают.

Теорема доказана.

Из этих двух теорем можно сформулировать следующие следствия:

Следствие 1: Вписанная в правильный многоугольник окружность касается его в серединах его сторон.

Следствие 2: Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в этот же правильный многоугольник. Этот центр называется центром правильного многоугольника.

Формулы для правильного многоугольника

Дадим теперь несколько формул, относящихся к понятию правильного многоугольника (без их вывода).

Введем следующие обозначения. Пусть $S$ — площадь правильного многоугольника, $P$ — периметр правильного многоугольника, $a$ — сторона правильного многоугольника, $r$ — радиус вписанной в правильный многоугольник окружности, $R$ — радиус описанной около правильного многоугольника окружности. Тогда

Видео:Окружность, описанная около правильного многоугольника | Геометрия 7-9 класс #105 | ИнфоурокСкачать

Окружность, описанная около правильного многоугольника | Геометрия 7-9 класс #105 | Инфоурок

Пример задачи на понятие правильного многоугольника

Чему равна сумма внешних углов правильного $n$-угольника. Если при каждой вершине взят только один внешний угол.

Решение.

Очевидно, что все внешние углы будут равны между собой и их количество равно $n$. Найдем один из них. Внешний угол $beta $ многоугольника будет смежным с внутренним углом многоугольника. Используя формулу нахождения угла правильного $n$-угольника $alpha =frac<^0(n-2)>$, получим

Значит, сумма всех внешних углов равна

Ответ: $^0.$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 15 04 2021

Видео:Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Окружность, описанная около правильного многоугольника

Теорема

Что является центром описанной окружности около правильного многоугольника
Около любого правильного многоугольника можно описать окружность, и притом только одну.

Доказательство

Дано: А1А2А3. Аn — правильный многоугольник.

Доказательство:

Пусть точка О — точка пересечения биссектрис углов А1 и А2. Соединим точку О отрезками с остальными вершинами многоугольника и докажем, что ОА1 = ОА2 = . = ОАn.

Что является центром описанной окружности около правильного многоугольника

А1А2А3. Аn — правильный многоугольник, значит, Что является центром описанной окружности около правильного многоугольникаА1 = Что является центром описанной окружности около правильного многоугольникаА2, тогда Что является центром описанной окружности около правильного многоугольника1 = Что является центром описанной окружности около правильного многоугольника3 (т.к. ОА1 и ОА2 биссектрисы равных углов А1 и А2), следовательно,

Что является центром описанной окружности около правильного многоугольникаА1ОА2 — равнобедренный (по признаку равнобедренного треугольника), поэтому ОА1 = ОА2.

Что является центром описанной окружности около правильного многоугольникаА1ОА2 = Что является центром описанной окружности около правильного многоугольникаА2ОА3 по двум сторонам и углу между ними (А1А2 = А2А3 как стороны правильного многоугольника, ОА2 — общая, Что является центром описанной окружности около правильного многоугольника3 = Что является центром описанной окружности около правильного многоугольника4, т.к. ОА2 биссектриса угла А2), следовательно,

ОА1 = ОА3. Аналогично можно доказать, что ОА2 = ОА4, ОА3 = ОА5 и т.д.

Итак, ОА1 = ОА2 = . = ОАn, значит, точка О равноудалена от всех вершин многоугольника. Поэтому окружность с центром О и радиусом ОА1 является описанной около многоугольника А1А2А3. Аn.

Докажем, что описать можно только одну окружность.

Рассмотрим какие-нибудь три вершины многоугольника А1А2А3. Аn, например, А1, А2, А3. Мы можем начертить только одну окружность одновременно проходящую через три точки А1, А2, А3 (смотри доказательство), т.е. другой окружности проходящей через три данные точки не существует, значит, около многоугольника А1А2А3. Аn можно описать только одну окружность, т.к. точки А1, А2, А3 — вершины данного многоугольника. Теорема доказана.

Поделись с друзьями в социальных сетях:

🔍 Видео

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Радиус описанной окружностиСкачать

Радиус описанной окружности

9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Правильные многоугольники. Урок 12. Геометрия 9 классСкачать

Правильные многоугольники. Урок 12. Геометрия 9 класс

ОПИСАННАЯ ОКРУЖНОСТЬ около многоугольника | геометрия 9 классСкачать

ОПИСАННАЯ ОКРУЖНОСТЬ около многоугольника | геометрия 9 класс

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Правильные многоугольники. Окружность, описанная около правильного многоугольника, вписанная в него.Скачать

Правильные многоугольники. Окружность, описанная около правильного многоугольника, вписанная в него.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Окружность описанная вокруг правильного многоугольникаСкачать

Окружность описанная вокруг правильного многоугольника

Геометрия 9 класс (Урок№26 - Построение правильных многоугольников.)Скачать

Геометрия 9 класс (Урок№26 - Построение правильных многоугольников.)
Поделиться или сохранить к себе: