Что является центром окружности вписанной в многоугольник правильный

Окружность, вписанная в правильный многоугольник

Теорема

В любой правильный многоугольник можно вписать окружность, и притом только одну.

Доказательство

Доказать: в многоугольник А1А2А3. Аn можно вписать окружность, и притом только одну.

Доказательство:

Что является центром окружности вписанной в многоугольник правильный

Что является центром окружности вписанной в многоугольник правильныйА1ОА2 = Что является центром окружности вписанной в многоугольник правильныйА2ОА3 = . = Что является центром окружности вписанной в многоугольник правильныйА1ОАn по трем сторонам (ОА1 = ОА2 = . = ОАn, как радиусы описанной окружности и А1А2 = А2А3 = . = АnА1, как стороны правильного многоугольника), тогда и высоты этих треугольников, проведенные из вершины О, также будут равны: ОН1 = ОН2 = . = ОНn. Следовательно, окружность с центром О и радиусом ОН1 проходит через точки Н1, Н2, . , Нn и касается сторон многоугольника в этих точках, т.е. эта окружность вписана в данный правильный многоугольник А1А2А3. Аn.

Докажем, что вписать можно только одну окружность.

Пусть существует окружность с центром О1, вписанная в многоугольник А1А2А3. Аn, отличная от окружности с центром О и радиусом ОН1. Тогда ее центр О1 равноудален от сторон многоугольника, т.е. точка О1 лежит на каждой из биссектрис углов многоугольника А1А2А3. Аn и, следовательно, совпадает с точкой О пересечения этих биссектрис (смотри теорему об окружности, описанной около правильного многоугольника). Радиус этой окружности равен расстоянию от точки О до сторон многоугольника,т.е. равен ОН1. Значит, получаем, что вторая окружность совпадает с первой. Следовательно, наше предположение неверно, и в правильный многоугольник вписать можно только одну окружность. Теорема доказана.

Следствие 1

Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.

Следствие 2

Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.

Эта точка называется центром правильного многоугольника.

Поделись с друзьями в социальных сетях:

Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Что является центром окружности вписанной в многоугольник правильный

Ключевые слова: многоугольник, правильный многоугольник, сторона, угол, вписанная, описанная окружность

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон.

Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра.

Что является центром окружности вписанной в многоугольник правильный

Что является центром окружности вписанной в многоугольник правильный
См. также:
Вписанная окружность, Описанная окружность, Выпуклый четырёхугольник, Произвольный выпуклый многоугольник

Видео:Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | ИнфоурокСкачать

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | Инфоурок

Окружность, вписанная в правильный многоугольник

На этом занятии мы рассмотрим следующую тему – «Окружность, вписанная в правильный многоугольник». В первую очередь дадим определение правильному многоугольнику. После чего докажем теорему о том, что внутри любого правильного многоугольника можно вписать окружность, и притом только одну. Кроме того, рассмотрим следствия из этой теоремы.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

📸 Видео

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

111. Окружность, вписанная в правильный многоугольникСкачать

111. Окружность, вписанная в правильный многоугольник

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, вписанная в правильный многоугольник. Видеоурок по геометрии 9 классСкачать

Окружность, вписанная в правильный многоугольник. Видеоурок по геометрии 9 класс

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Правильные многоугольники. Урок 11. Геометрия 9 классСкачать

Правильные многоугольники. Урок 11. Геометрия 9 класс

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Правильный многоугольник. Окружность, описанная около правильного многоугольника.Скачать

Правильный многоугольник. Окружность, описанная около правильного многоугольника.

Геометрия 9 класс (Урок№26 - Построение правильных многоугольников.)Скачать

Геометрия 9 класс (Урок№26 - Построение правильных многоугольников.)

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Радиус описанной окружностиСкачать

Радиус описанной окружности

✓ Экстремальная задача про правильный вписанный многоугольник | Ботай со мной #078 | Борис ТрушинСкачать

✓ Экстремальная задача про правильный вписанный многоугольник | Ботай со мной #078 | Борис Трушин
Поделиться или сохранить к себе:
Что является центром окружности вписанной в многоугольник правильный