Теорема
В любой правильный многоугольник можно вписать окружность, и притом только одну. |
Доказательство
Доказать: в многоугольник А1А2А3. Аn можно вписать окружность, и притом только одну.
Доказательство:
А1ОА2 = А2ОА3 = . = А1ОАn по трем сторонам (ОА1 = ОА2 = . = ОАn, как радиусы описанной окружности и А1А2 = А2А3 = . = АnА1, как стороны правильного многоугольника), тогда и высоты этих треугольников, проведенные из вершины О, также будут равны: ОН1 = ОН2 = . = ОНn. Следовательно, окружность с центром О и радиусом ОН1 проходит через точки Н1, Н2, . , Нn и касается сторон многоугольника в этих точках, т.е. эта окружность вписана в данный правильный многоугольник А1А2А3. Аn.
Докажем, что вписать можно только одну окружность.
Пусть существует окружность с центром О1, вписанная в многоугольник А1А2А3. Аn, отличная от окружности с центром О и радиусом ОН1. Тогда ее центр О1 равноудален от сторон многоугольника, т.е. точка О1 лежит на каждой из биссектрис углов многоугольника А1А2А3. Аn и, следовательно, совпадает с точкой О пересечения этих биссектрис (смотри теорему об окружности, описанной около правильного многоугольника). Радиус этой окружности равен расстоянию от точки О до сторон многоугольника,т.е. равен ОН1. Значит, получаем, что вторая окружность совпадает с первой. Следовательно, наше предположение неверно, и в правильный многоугольник вписать можно только одну окружность. Теорема доказана.
Следствие 1
Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах. |
Следствие 2
Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник. |
Эта точка называется центром правильного многоугольника.
Поделись с друзьями в социальных сетях:
Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать
Что является центром окружности вписанной в многоугольник правильный
Ключевые слова: многоугольник, правильный многоугольник, сторона, угол, вписанная, описанная окружность
Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.
Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон.
Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра.