Если посмотреть на числовую окружность , то можно заметить, что оси абсцисс и ординат разбивают ее на четыре части. Эти части называют четвертями и нумеруют в том порядке как их проходят, двигаясь в положительном направлении (против часовой стрелки).
(() (frac) (;2π)) — четвертая четверть
- Почему так важно определять какой четверти принадлежит угол?
- Про непостоянство четвертей:
- Всё про окружность и круг
- Единичная числовая окружность на координатной плоскости
- п.1. Понятие тригонометрии
- п.2. Числовая окружность
- п.3. Градусная и радианная мера угла
- п.4. Свойства точки на числовой окружности
- п.5. Интервалы и отрезки на числовой окружности
- п.6. Примеры
- 📽️ Видео
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Почему так важно определять какой четверти принадлежит угол?
Дело в том, что каждая четверть уникальна в плане знаков тригонометрических функций .
Например, для любого угла из второй четверти — синус положителен, а косинус , тангенс и котангенс отрицательны. А для любого угла из первой четверти — все четыре функции будут положительны.
Теперь давайте рассмотрим пример задачи, которую не решить без использования знаний про четверти.
Пример (ЕГЭ):
((0;-) (frac) ()) — четвертая четверть Ну и, конечно, мы можем в отрицательную сторону делать обороты, так же как и в положительную. Видео:Длина окружности. Площадь круга. 6 класс.Скачать Всё про окружность и кругОкружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R). Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр. Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.
Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2
Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.
Квадрат касательной равен произведению секущей на ее внешнюю часть
Центральный угол — это угол, вершина которого совпадает с центром окружности. Дугой называется часть окружности, заключенная между двумя точками. Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.
Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.
Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.
Периметр сектора: P = s + 2R. Площадь сектора: S = Rs/2 = ПR 2 а/360°. Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой. Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать Единичная числовая окружность на координатной плоскостип.1. Понятие тригонометрииТригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами. Базовым объектом изучения в тригонометрии является угол. Предметом изучения тригонометрии как раздела математики выступают: п.2. Числовая окружностьМы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
п.3. Градусная и радианная мера углаУглы можно измерять в градусах или в радианах. В целом, более обоснованной и естественной для измерения углов является радианная мера.
п.4. Свойства точки на числовой окружностиПостроим числовую окружность. Обозначим O(0;0), A(1;0)
п.5. Интервалы и отрезки на числовой окружностиКаждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.
п.6. ПримерыПример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: begin BE=30^=frac.\ EC=60^=frac.\ AE=EC+CD=90^+30^=120^=frac.\ ED=EC+CD=60^+90^=150^=frac. end Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: (-frac; frac; frac; frac).
Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: (-frac; 5pi; frac; frac).
Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.
(fracpi2lt 2lt pi Rightarrow ) угол 2 радиана находится во 2-й четверти Пример 5. Изобразите на числовой окружности множество точек ((kinmathbb)), запишите количество полученных базовых точек.
Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам. 📽️ ВидеоМатематика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать Математика это не ИсламСкачать Прямоугольник в четверти окружностиСкачать Тригонометрическая окружность. Как выучить?Скачать Найти площадь квадрата вписанного в четверть окружности.Скачать Формулы приведения - как их легко выучить!Скачать Всё про углы в окружности. Геометрия | МатематикаСкачать Соответствие чисел точкам числовой окружностиСкачать 7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать Тригонометрия. 10 класс. Вебинар | МатематикаСкачать Окружность. Круг. 5 класс.Скачать Деление окружности на 3; 6; 12 равных частейСкачать Длина окружности. Математика 6 класс.Скачать 🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать Найдите площядь четверть окружности, при заданных условии фигуреСкачать Вычисление значений тригонометрических функцийСкачать |