Через точку вне данной прямой можно провести параллельную этой прямой и притом только
Обновлено
Поделиться
Существование плоскости, параллельной данной плоскости
ПАРАЛЛЕЛЬНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ
Параллельные прямые в пространстве
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися.
Параллельные прямые в пространстве. Свойства Теорема Через точку вне данной прямой можно провести прямую, параллельную этой прямой, и притом только одну. Доказательство Пусть a – данная прямая и A – точка, не лежащая на этой прямой. Проведем через прямую a и точку A плоскость α. Проведем через точку A в плоскости α прямую a1, параллельную a. Докажем, что прямая a1, параллельная a, единственна. Допустим, что существует другая прямая a2, проходящая через точку A и параллельная прямой a. Через прямые a и a2 можно провести плоскость α2. Плоскость α2 проходит через прямую a и точку A; следовательно, по теореме о точке и прямой в пространстве она совпадает с α. Теперь по аксиоме параллельных прямые a1 и a2 совпадают. Теорема доказана.
Признак параллельности прямых в пространстве
Теорема
Две прямые , параллельные третьей прямой, параллельны.
Доказательство
Пусть прямые b и с параллельны прямой a. Нужно доказать, что прямые b и с параллельны. Случай, когда прямые a, b, с лежат в одной плоскости рассмотрен а разделе параллельные прямые. Пусть прямые не лежат в одной плоскости и β — плоскость, в которой лежат прямые a и b, а γ — плоскость, в которой лежат прямые a и с. Плоскости β и γ различны. Отметим на прямой b какую-нибудь точку B и проведем плоскость γ1 через прямую с и точку B. Она пересечет плоскость β по прямой b1. Прямой b1 не пересекает плоскость γ. Действительно, точка пересечения должна принадлежать прямой a, так как прямая b1 лежит в плоскости β. С другой стороны, она должна лежать и на прямой с, так как прямая b1 лежит в плоскости γ1. Но прямые a и с как параллельные не пересекаются. Так как прямая b1 лежит в плоскости β и не пересекает прямую a, то она параллельна a, а значит, совпадает с b по аксиоме параллельных. Значит, прямая b, совпадая с прямой b1, лежит в одной плоскости с прямой с (в плоскости γ1) и не пересекает ее и прямые b и с параллельны. Теорема доказана.
Признак параллельности прямой и плоскости Теорема Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости. Доказательство Пусть α — плоскость, a – не лежащая в ней прямая и a1 – прямая в плоскости α, параллельная прямой a. Проведем плоскость α1 через прямые a и a1. Плоскости α и α1 пересекаются по прямой a1. Если бы прямая a пересекала плоскость α, то точка пересечения принадлежала бы прямой a1. Но это невозможно, так как прямые a и a1 параллельны. Следовательно, прямая a не пересекает плоскостью α, а значит, параллельна плоскости α. Теорема доказана.
Признак параллельности плоскостей Две плоскости называются параллельными, если они не пересекаются. Теорема Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Доказательство Пусть α и β — данные плоскости, a1 и a2 – прямые в плоскости α, пересекающиеся в точке A, b1 и b2 – соответственно параллельные им прямые в плоскости β. Предположим, что плоскости α и β не параллельны, а значит пересекаются по некоторой прямой с. По теореме о признаке параллельности прямой и плоскости прямые a1 и a2, как параллельные прямые b1 и b2, параллельны плоскости β, и поэтому они не пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости α через точку A проходят прямые a1 и a2, параллельные прямой с. Это невозможно по аксиоме параллельных. Что противоречит предположению. Теорема доказана.
Существование плоскости, параллельной данной плоскости
Теорема
Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.
Доказательство
Проведем в данной плоскости α какие-нибудь две пересекающиеся прямые a и b. Через данную точку A проведем параллельные им прямые a1 и b1. Плоскость β, проходящая через прямые a1 и b1, по теореме о признаке параллельности плоскостей параллельна плоскости α.
Предположим, что через точку A проходит другая плоскость β1, тоже параллельная плоскости α. Отметим на плоскости β1 какую-нибудь точку С, не лежащую в плоскости β. Проведем плоскость γ через точки A, С и какую-нибудь точку B плоскости α. Эта плоскость пересечет плоскости α, β и β1 по прямым b, a и с. Прямые a и с не пересекают прямую b, так как не пересекают плоскость α. Следовательно, они параллельны прямой b. Но в плоскости γ через точку A может проходить только одна прямая, параллельная прямой b. что противоречит предположению. Теорема доказана.
Видео:7 класс, 16 урок, Перпендикуляр к прямойСкачать
Через точку вне данной прямой можно провести параллельную этой прямой и притом только
Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.
Если две прямые и параллельны, то, как и в планиметрии, пишут . В пространстве прямые могут быть размещены так, что они не пересекаются и не параллельны. Этот случай является особым для стереометрии.
Прямые, которые не имеют общих точек и не параллельны, называются скрещивающимися .
Через точку вне данной прямой можно провести прямую, параллельную данной, и притом только одну.
Чертеж 2.1.1
Пусть (чертеж 2.1.1). Прямая и точка определяют единственную плоскость . В этой плоскости проведем через точку прямую , параллельную прямой . Если существует еще одна прямая , параллельная и проходящая через точку , то по определению параллельных прямых и определяют некоторую плоскость. Эта плоскость содержит прямую и точку , то есть совпадает с плоскостью . Следовательно, в плоскости через точку проходят две прямые, параллельные прямой , что противоречит аксиоме о параллельных прямых в планиметрии.
Замечание. Согласно определению, две параллельные прямые лежат в одной плоскости. Легко заметить, что через две параллельные прямые можно провести только одну плоскость.
Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти две прямые скрещиваются.
Чертеж 2.1.2
Пусть , , (чертеж 2.1.2). Допустим, что прямые и не скрещивающиеся, то есть они пересекаются. Тогда существует плоскость , которой принадлежат прямые и . В этой плоскости лежат прямая и точка . Поскольку прямая и точка вне ее определяют единственную плоскость, то . Но и , следовательно, равенство невозможно.
Если одна из двух параллельных прямых пересекает плоскость, то и другая пересекает эту плоскость.
Чертеж 2.1.3
Пусть и (чертеж 2.1.3). Параллельные прямые и определяют некоторую плоскость . Плоскости и имеют общую точку , а, следовательно, имеют и общую прямую , проходящую через точку по аксиоме 1.2. Через точку можно провести только одну прямую , параллельную . Следовательно, не параллельна . Прямые и не параллельны и лежат в одной плоскости , следовательно, пересекаются в некоторой точке . Прямая имеет с плоскостью общую точку и не лежит в плоскости (иначе по теореме 2.2 и были бы скрещивающимися). Следовательно, прямая пересекает плоскость . Лемма доказана.
Две прямые, параллельные третьей, параллельны между собой. Другими словами, если и , то .
Чертеж 2.1.4
Пусть и (чертеж 2.1.4). Заметим, что прямые и по теореме 2.1 не могут пересекаться, то есть если бы у них была одна точка, то через эту точку можно было бы провести единственную прямую, параллельную прямой , то есть они бы совпадали. Докажем, что прямые и лежат в одной плоскости. Пусть . Проведем плоскость через прямую и точку и докажем, что . Если пересекает плоскость , то по лемме 2.1 пересекает плоскость , и пересекает плоскость . Мы пришли к противоречию, так как . Итак, , и и не имеют общих точек, следовательно .
Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать
Стереометрия. Страница 2
Главная
Репетиторы
Учебные материалы
Контакты
Главная > Учебные материалы > Математика: Стереометрия. Страница 2
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
1. Параллельность прямых в пространстве
Теорема. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
Доказательство. Пусть b данная прямая и точка А, не лежащая на данной прямой. Проведем через точку А и прямую b плоскость α. А через точку А прямую a, параллельную прямой b. (Рис.1)
Допустим, что существует другая прямая а’, параллельная прямой b и проходящая через точку А. Тогда через них можно провести плоскость β. Отсюда следует, что через точку А и прямую b можно провести две плоскости. А это невозможно согласно теореме о единственности существования плоскости, проведеной через прямую и не лежащую на ней точку. Таким образом, плоскости α и β совпадают. А следовательно, согласно аксиоме, прямые а и a’ совпадают также.
Теорема. Две прямые, параллельные третьей прямой, параллельны.
Доказательство. Пусть прямые а и b лежат в разных плоскостях и параллельны прямой с. Доказать, что прямые а и b параллельны между собой. (Рис.2)
Проведем через прямую a и c плоскость α. Через прямые b и c плоскость β. Прямая с — прямая пересечения плоскостей α и β. Отметим на прямой а точку А. Проведем через точку А и прямую b плоскость γ. Тогда плоскость γ будет пересекать плоскость α по прямой а’. Прямая a’ либо паралельна прямой c, либо ее пересекает. Допустим прямая а’ пересекает прямую с. Тогда эта точка пересечения принадлежит плоскости β, т.к. прямая с принадлежит двум плоскостям α и β. А т.к. прямая а’ полностью принадлежит плоскости γ, а прямая b есть прямая пересечения плоскостей γ и β, то это означает, что она пересекает и прямую b. А это означает, что прямые b и c пересекаются, т.к. прямая a’ пересекает плоскость β только в одной точке, которая должна принадлежать двум прямым b и с. А это противоречит условию. Следовательно прямая a’ не пересекает прямую с. Она ей параллельна. Согласно аксиоме, на плоскости α, через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. И эта прямая а. Т.е. прямые а и а’ совпадают. Это значит, что прямые а и b параллельны.
Теорема: если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Доказательство.
Пусть α и β данные плоскости. Прямая а параллельна прямой а 1 . Прямая b параллельна b 1 (Рис.3). Допустим, что плоскости α и β пересекаются по прямой с. Тогда прямая с должна пересекать, как минимум, одну из прямых на каждой плоскости. Пусть это будут прямые а и а 1 . Т.к. прямые а и а 1 параллельны, следовательно они пересекают прямую с в разных точках Е и Е 1 . Проведем через две параллельные прямые а и а 1 плоскость γ. Тогда точки Е и Е 1 , которые лежат на прямой с, будут принадлежать плоскости γ. Следовательно, прямая с полностью принадлежит плоскости γ. Отсюда следует, что:
а ∈ α, γ. а 1 ∈ β, γ. с ∈ α, β,γ
т.е. плоскости α и γ пересекаются по двум прямым а и с, а плоскости β и γ пересекаются по прямым а 1 и с.
Рис. 3 Признак параллельности плоскостей.
Согласно аксиоме стереометрии, это невозможно, т.к. две плоскости могут пересекаться только по одной прямой. И следовательно, наше предположение неверно. Плоскости α и β не пересекаются, они параллельны.
Теорема: Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.
Доказательство.
Пусть даны две параллельные плоскости α и β (Рис.4). Плоскость γ пересекает их по прямым а и b.
Допустим, что прямые пересечения плоскостей пересекаются. Это прямые а и b’. Прямая а — это множество точек, принадлежащих плоскостям α и γ. А так как прямая b’ представляет собой множество точек, пренадлежащих двум плоскостям β и γ, то отсюда следует, что существует точка пересечения прямых а и b’, которая принадлежит плоскости α. И следовательно, плоскости α и β имеют общую точку. А это противоречит условию, т.к. плоскости α и β не пересекаются, они параллельны. Следовательно, прямые а и b лежат в одной плоскости и не пересекаются. Т.е. они тоже параллельны.
Рис. 4 Свойства параллельных плоскостей.
5. Пример 1
Докажите, что если прямые АВ и CD скрещивающиеся, то прямые АС и BD тоже скрещиваются.
Доказательство:
Пусть даны две скрещивающиеся прямые АВ и CD. Проведем через прямую АВ и точку С плоскость α (Рис.5). Так как прямые АВ и CD скрещивающиеся, то прямая CD не лежит в плоскости α, а пересекает ее в одной точке С.
Отсюда следует, что точка D не принадлежит плоскости α. Она лежит вне ее.
Таким образом, если мы проведем прямую АС, то она полностью будет принадлежать плоскости α, так как две ее точки А и С принадлежат плоскости α.
А прямая BD не будет принадлежать плоскости α, так как точка D не принадлежит плоскости α. Прямая BD будет пересекать плоскость α в одной точке В.
Отсюда можно сделать вывод, что прямая АС не может пересекать прямую BD, так как прямая АС полностью принадлежит плоскости α. А прямая BD имеет только одну общую точку с плоскостью α, точку В. Но так как точка В не лежит на прямой АС, следовательно, прямые АС и BD не пересекаются. Они являются скрещивающимися.
Рис.5 Задача. Докажите, что если прямые АВ и CD скрещивающиеся.
Пример 2
Точки А, В, С, D не лежат в одной плоскости. Докажите, что прямая, проходящая через середины отрезков АВ и ВС, параллельна прямой, проходящей через середины отрезков AD и CD.
Доказательство:
Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем плоскость α через точки A, D, C и плосксоть α’ через точки А, В, С (Рис.6). Точки P, S, F, E являются серединами отрезков AB, BC, AD и CD соответственно. Необходимо доказать, что прямая PS параллельна прямой FE.
Рассмотрим треугольник АВС. Он полностью лежит в плоскости α’, так как три его вершины лежат в данной плоскости по построению. Отрезок PS представляет собой среднюю линию треугольника, которая параллельна АС.
Теперь рассмотрим треугольник АСD. Он полностью лежит в плоскости α, так как три его вершины лежат в данной плоскости по построению. Отрезок FE представляет собой среднюю линию треугольника, которая также параллельна АС.
Отсюда можно сделать вывод: если две прямые PS и FE параллельны третьей прямой АС, то они параллельны и между собой. И равны половине основанию АС. Таким образом, PSEF представляет собой параллелограмм.
Рис.6 Задача. Точки А, В, С, D не лежат в одной плоскости.
Пример 3
Даны четыре точки А, В, С, D, не лежащие в одной плоскости. Докажите, что прямые, соединяющие середины отрезков АВ и ВС, АС и BD, AD и BC пересекаются в одной точке.
Доказательство:
Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем отрезки EP, VS, FT, которые соединят середины сторон AB и CD, BC и AD, AC и BD соответственно (Рис.7).
Из предыдущей задачи нам известно, что четырехугольник EVPS, вершины которого являются серединами отрезков АВ, ВС, СD и AD, есть параллелограмм, у которого EP и VS диагонали. Эти диагонали пересекаются в точке О и делятся этой точкой пополам.
Теперь рассмотрим четырехугольник VTSF. Данный четырехугольник также является параллелограммом, так как его вершины — это середины отрезков BC, BD, AC и AD. А его диагонали VS и FT пересекаются в точке О и делятся этой точкой пополам.
Так как у отрезка VS середина одна, т.е. точка О, то все три диагонали EP, VS и FT пересекаются в этой точке.
Рис.7 Задача. Даны четыре точки А, В, С, D, не лежащие в одной плоскости.
Пример 4
Докажите, что если две плоскости, пересекающиеся по прямой а, пересекают плоскость α по параллельным прямым, то прямая а параллельна плоскости α.
Доказательство:
Пусть даны две плоскости β и γ, пересекающиеся по прямой а (Рис.8). Эти плоскости пересекают плоскость α по параллельным прямым b и с. Необходимо доказать, что прямая а параллельна плоскости α.
Прямая b — это множество точек, которые одновременно принадлежат плоскостям α и γ. Прямая с — это множество точек, которые одновременно принадлежат плоскостям α и β. Так как прямые b и с параллельны, то на этих прямых нет ни одной точки, которая одновременно принадлежала бы трем плоскостям.
Прямая а — это множество точек, которые принадлежат двум плоскостям β и γ. Допустим, что она пересекает плоскость α. Тогда на ней должна быть точка, которая принадлежала бы одновременно трем плоскостям. А следовательно, она одновременно лежала бы на прямых b и с. Но это противоречит условию задачи, так как прямые b и с не пересекаются. Следовательно, прямая а параллельна прямым b и с. А отсюда следует, что она параллельна плоскости α.
Рис.8 Задача. Докажите, что если две плоскости, пересекающиеся по прямой а.
Пример 5
Докажите, что если четыре прямые, проходящие через точку О, пересекают плоскость α в вершинах параллелограмма, то они пересекают любую плоскость, параллельную α и не проходящую через точку О, тоже в вершинах параллелограмма.
Доказательство:
Пусть даны четыре прямые, проходящие через точку О, ОА, ОВ, ОС и OD (Рис.9). Они пересекают плоскость α в точках А, В, С и D соответственно. Проведем плоскость α’, параллельную плоскости α. Тогда прямые ОА, ОВ, ОС и OD пересекут плоскость α’ в точках A’B’C’D’.
Проведем плоскость β через точки А, В, A’, B’. Тогда прямые АВ и A’B’ не пересекаются, так как это прямые пересечения двух параллельных плоскостей α и α’ с секущей плоскостью β.
Отсюда следует, что прямые ВС и В’С’, CD и C’D’, AD и A’D’ параллельны. А так как АВ параллельна CD, а ВС параллельна AD, то следовательно, А’В’ параллельна C’D’, а В’С’ параллельна A’D’.
Таким образом, A’B’C’D’ также является параллелограммом.
Рис.9 Задача. Докажите, что если четыре прямые, проходящие через точку А.
📽️ Видео
Параллельность прямой и плоскости. 10 класс.Скачать
Геометрия. 7 класс. Теоремы. Т4. Перпендикуляр к прямой.Скачать
Как построить прямую, перпендикулярную данной прямой через точку, которая лежит на данной прямойСкачать