Через какую нибудь точку А прямой а проводим прямую b1, параллельную b ; через прямые а и b1 проводим плоскость. Она и будет искомой. Задача имеет в этом случае единственное решение.
2-й случай. Прямые а и b параллельны. В этом случае задача неопределенна: всякая плоскость, проходящая через прямую а, будет параллельна прямой b.
- Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн
- Предупреждение
- Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения
- Начертательная геометрия, решение задач №31-38 СибАДИ
- ТЕМА6. Перпендикулярность прямой и плоскости, двух плоскостей или множества геометрических элементов
- 🎥 Видео
Видео:Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать
Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Построение параллельной плоскости на расстояние 30 мм.Скачать
Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:
. | (1) |
. | (2) |
Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).
Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.
Уравнение плоскости можно записать формулой
Ax+By+Cz+D=0. | (3) |
и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:
Ax1+By1+Cz1+D=0. | (4) |
Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:
Am1+Bp1+Cl1=0 | (5) |
Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:
Am2+Bp2+Cl2=0 | (6) |
Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:
(7) |
Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.
Пример 1. Найти уравнение плоскости α, проходящей через прямую L1:
(8) |
паралленьно другой прямой L2 :
(9) |
Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= прямой L1. Тогда уравнение плоскости должна удовлетворять условию:
(10) |
а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:
(11) |
Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:
(12) |
(13) |
(14) |
(15) |
Представим эти уравнения в матричном виде:
(16) |
Решим систему линейных уравнений (16) отностительно A, B, C, D:
(17) |
Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= то она может быть представлена формулой:
Ax+By+Cz+D=0 | (18) |
Подставляя значения A,B,C,D в (17), получим:
(18) |
Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:
13x−4y+3z−24=0 | (19) |
Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).
Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:
(20) |
q1=<m1, p1, l1>= |
q2=<m2, p2, l2>= |
Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= прямой L1. Тогда уравнение плоскости должна удовлетворять условию:
Ax1+By1+Cz1+D=0 | (22) |
а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:
(23) |
Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:
(24) |
A(−2)+B·0+C·1+D=0, | (25) |
A·5+B(−8)+C·3=0, | (26) |
A·1+B·1+C·1=0, | (27) |
Представим эти уравнения в матричном виде:
(28) |
Решим систему линейных уравнений (28) отностительно A, B, C, D:
(29) |
Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= то она может быть представлена формулой:
Ax+By+Cz+D=0 | (30) |
Подставляя значения A,B,C,D в (30), получим:
(31) |
Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:
11x+2y−13z+35=0 | (32) |
Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).
Видео:Параллельность прямой к плоскостиСкачать
Начертательная геометрия, решение задач №31-38 СибАДИ
Видео:Параллельность прямой и плоскости. 10 класс.Скачать
ТЕМА6. Перпендикулярность прямой и плоскости, двух плоскостей или множества геометрических элементов
Задача № 31 Через точку А провести плоскость, параллельную данной.
Задача № 32 Через прямую а провести плоскость, перпендикулярную к плоскости бета, заданной прямыми LK и KM
Задача № 33 На прямой MN найти точку, равноудаленную от точек A и B
Задача № 34 Построить горизонтальную проекцию прямой АВ, пересекающейся с прямой CD при условии, что угол между ними прямой.
Задача № 35 Построить на плоскости треугольника CDE множество точек равноудаленных от концов отрезка AB
Задача № 36 Через точку А провести прямую пересекающую отрезок CD и параллельную плоскости треугольника KLM.
Задача № 37 Через точку А построить прямую параллельную двум плоскостям, заданным следами.
Задача № 38 Провести плоскость параллельную плоскости треугольника АВС, и удаленную от нее на 30 мм.
🎥 Видео
54. Построение плоскости, перпендикулярной заданной и проходящей через прямуюСкачать
10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Перпендикулярность прямой и плоскости. 10 класс.Скачать
Построение параллельной плоскости на расстояние 40 мм. Плоскость задана со следами.Скачать
10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскостиСкачать
Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Прямая параллельная плоскостиСкачать
Через точку К, сим-ную точке D относительно пл-ти α(АВС), построить плоскость, парал. плоскости α.Скачать
10 класс, 10 урок, Параллельные плоскостиСкачать
Параллельность прямой и плоскостиСкачать
Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать
10 класс, 6 урок, Параллельность прямой и плоскостиСкачать
10 класс, 3 урок, Некоторые следствия из аксиомСкачать