Частота обращения частицы по окружности в магнитном поле

Движение заряженной частицы в магнитном поле: формулы. Движение заряженных частиц в однородном магнитном поле

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Видео:Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой АрхиповымСкачать

Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой Архиповым

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Видео:Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном поле

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

Частота обращения частицы по окружности в магнитном поле

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Видео:Билеты №25, 26 "Движение зарядов в поле"Скачать

Билеты №25, 26 "Движение зарядов в поле"

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

Частота обращения частицы по окружности в магнитном поле

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

Частота обращения частицы по окружности в магнитном поле

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

Частота обращения частицы по окружности в магнитном поле

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Видео:26 задание ЕГЭ Движение частицы в магнитном поле | ЕГЭ по физике| Физика 11 классСкачать

26 задание ЕГЭ Движение частицы в магнитном поле | ЕГЭ по физике| Физика 11 класс

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у 2 + νz 2 ).

Частота обращения частицы по окружности в магнитном поле

Видео:ЕГЭ Физика 205F4D В постоянном магнитном поле заряженная частица движется по окружностиСкачать

ЕГЭ Физика 205F4D В постоянном магнитном поле заряженная частица движется по окружности

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

Частота обращения частицы по окружности в магнитном поле

Видео:Урок 87 (осн). Вращательное движение. Период и частота вращенияСкачать

Урок 87 (осн). Вращательное движение. Период и частота вращения

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

Частота обращения частицы по окружности в магнитном поле

Видео:Движение заряженной частицы в магнитном поле 2021-1Скачать

Движение заряженной частицы в магнитном поле    2021-1

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

Частота обращения частицы по окружности в магнитном поле

Видео:Тема 27. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Тема 27. Сила Лоренца. Движение заряженных частиц в магнитном поле

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

Частота обращения частицы по окружности в магнитном поле

и затем, используя уравнение v=E/B, мы находим, что

Частота обращения частицы по окружности в магнитном поле

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Видео:Альфа частица движется по окружности в однородном магнитном полеСкачать

Альфа частица движется по окружности в однородном магнитном поле

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

Частота обращения частицы по окружности в магнитном поле

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т — время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один «удар» через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы — ν = qBR /m. Следовательно, ее кинетическая энергия

Частота обращения частицы по окружности в магнитном поле

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Видео:Урок 277. Масс-спектрограф. Циклотрон. Магнитный щит ЗемлиСкачать

Урок 277. Масс-спектрограф. Циклотрон. Магнитный щит Земли

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

Видео:55. Движение частиц в электромагнитных поляхСкачать

55. Движение частиц в электромагнитных полях

Частота обращения частицы по окружности в магнитном поле

Альфа-частица движется по окружности в однородном магнитном поле. Как изменятся ускорение альфа-частицы и частота её обращения, если уменьшить её кинетическую энергию?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Ускорение α-частицыЧастота обращения

α-частицы

При движении заряженной частицы в однородном магнитном поле по окружности параметры системы связаны между собой соотношениями

Частота обращения частицы по окружности в магнитном поле

Частота обращения частицы по окружности в магнитном поле

При уменьшении кинетической энергии уменьшается и скорость частицы. Если скорость частицы уменьшится, то ускорение частицы тоже уменьшится.

Рассмотрим второе уравнение ещё раз и выразим из него радиус обращения частицы:

Частота обращения частицы по окружности в магнитном поле

Частота обращения частицы обратно пропорциональна периоду: Частота обращения частицы по окружности в магнитном полеРадиус обращения частицы прямо пропорционален её скорости, следовательно, при изменении скорости отношение скорости и радиуса остаётся неизменным, то есть частота обращения частицы не изменяется.

Видео:19.2 Движение частицы в магнитном полеСкачать

19.2 Движение частицы в магнитном поле

Частота обращения частицы по окружности в магнитном поле

Задание 17. Протон в однородном магнитном поле движется по окружности. Чтобы в этом поле двигалась по окружности с той же скоростью а-частица, радиус окружности и частота обращения а-частицы по сравнению с протоном должны:

3) не измениться

На заряженную частицу (протон) со стороны магнитного поля действует сила Лоренца Частота обращения частицы по окружности в магнитном поле, где q – заряд частицы; v – скорость частицы; B – напряженность магнитного поля. Так как протон движется по окружности, то магнитное поле направлено перпендикулярно его движению, то есть Частота обращения частицы по окружности в магнитном полеи сила Лоренца в данном случае запишется в виде

Частота обращения частицы по окружности в магнитном поле.

В соответствии со вторым законом Ньютона, силу Лоренца также можно записать как

Частота обращения частицы по окружности в магнитном поле,

где Частота обращения частицы по окружности в магнитном поле— центростремительное ускорение. Получаем значение для радиуса окружности R:

Частота обращения частицы по окружности в магнитном поле.

Теперь вычислим изменение радиуса окружности для альфа-частицы, движущейся с той же скоростью. Альфа-частица имеет в своем составе два протона и два нейтрона, то есть ее масса в 4 раза больше массы протона, а заряд в 2 раза больше заряда протона. В итоге получаем:

Частота обращения частицы по окружности в магнитном поле,

то есть радиус окружности увеличится в 2 раза.

Частота обращения, равная Частота обращения частицы по окружности в магнитном поле, где T – период обращения, уменьшится, так как альфа-частица с той же скоростью должна пройти больший круг, следовательно, период обращения T увеличивается, а частота уменьшается.

📸 Видео

движение частицы в магнитном поле, физика, 10 класс, разбор задачСкачать

движение частицы в магнитном поле, физика, 10 класс, разбор задач

Физика. 10 класс. Сила Лоренца. Движение заряженной частицы в магнитном поле /12.04.2021/Скачать

Физика. 10 класс. Сила Лоренца. Движение заряженной частицы в магнитном поле /12.04.2021/

Движение заряженной частицы в поперечном магнитном полеСкачать

Движение заряженной частицы в поперечном магнитном поле

Положительно заряженная частица в магнитном и электрическом поле. Выполнялка 36Скачать

Положительно заряженная частица в магнитном и электрическом поле. Выполнялка 36

Движение заряженной частицы в магнитном поле | 16 задание ЕГЭ | Магнитные поля в ЕГЭ по физикеСкачать

Движение заряженной частицы в магнитном поле | 16 задание ЕГЭ | Магнитные поля в ЕГЭ по физике

Парфенов К.В. - Олимпиадная физика для 11-го класса - 9. Движение зарядов в магнитном полеСкачать

Парфенов К.В. - Олимпиадная физика для 11-го класса - 9. Движение зарядов в магнитном поле

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. ТехноскулСкачать

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. Техноскул
Поделиться или сохранить к себе: